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Abstract— Motion planners for mobile robots in unknown
environments face the challenge of simultaneously maintaining
both robustness against unmodeled uncertainties and persistent
feasibility of the trajectory-finding problem. That is, while
dealing with uncertainties, a motion planner must update its
trajectory, adapting to the newly revealed environment in real-
time; failing to do so may involve unsafe circumstances. Many
existing planning algorithms guarantee these by maintaining
the clearance needed to perform an emergency brake, which is
itself a robust and persistently feasible maneuver. However, such
maneuvers are not applicable for systems in which braking is
impossible or risky, such as fixed-wing aircraft. To that end, we
propose a real-time robust planner that recursively guarantees
persistent feasibility without any need of braking. The planner
ensures robustness against bounded uncertainties and persistent
feasibility by constructing a loop of sequentially composed
funnels, starting from the receding horizon local trajectory’s
forward reachable set. We implement the proposed algorithm
for a robotic car tracking a speed-fixed reference trajectory.
The experiment results show that the proposed algorithm can
be run at faster than 16 Hz, while successfully keeping the
system away from entering any dead end, to maintain safety
and feasibility.

I. INTRODUCTION

Motion planners for autonomous mobile robots in un-
known space should tackle two major challenges: being ro-
bust against unmodeled uncertainties, and persistently main-
taining the feasibility of the planning problem itself.

Unmodeled uncertainties include the trajectory tracking
error, sensor measurement error, and/or external forces such
as wind disturbance. Their influence is often overcome by
employing a trajectory planner which is robust against a
prescribed class of uncertainties [1–3], e.g., wind disturbance
of known maximum speed. Such methodologies provide a
tube, within which the system is guaranteed to stay without
collision. However, these tube-based methodologies often
drive the system into dead ends from which the system
cannot escape. Moreover, newly discovered obstacles may
invalidate the trajectory. In such cases, failing to find a
feasible trajectory update might lead to loss of safety.

Therefore, maintaining persistent feasibility is as impor-
tant. It is usually ensured through recursion [4, 5]: i.e., re-
cursive feasibility holds if having a single feasible maneuver
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Fig. 1: An autonomous ground rover avoids obstacle while trying
to reach the goal position (marked using yellow arrow) in unknown
space (shadowed region). The global path that leads to the goal is
marked blue. The FRS around the local receding horizon trajectory
is marked red. Starting from the endpoint of the local trajectory,
funnels are cyclically composed within known free area to ensure
recursive feasibility of the trajectory planner.

provides either persistent safety or the feasibility of finding
a next one. For many systems, braking is a widely-used
recursively feasible maneuvering strategy. [6] assumes the
system’s ability to perform a sudden stop, and [7, 8] explicitly
compute the spare space needed for the system to brake.
However, in some systems such as a fixed-wing aircraft,
the mentioned emergency brakes are difficult or impossible.
Feasibility must therefore be considered more carefully for
them.

In this paper, we present a real-time trajectory planning
algorithm that is both robust to bounded uncertainties and
recursively feasible at the same time, without any need
of braking capability. We begin by following the common
planning framework, planning a global path to the goal
through the free and unknown spaces, which is tracked by
a receding horizon local trajectory in the free space. We
guarantee recursive feasibility by attaching a loop of sequen-
tially constructed funnels starting from the local trajectory.
Robustness against uncertainties is guaranteed by requiring
the forward reachable set (FRS) of the local trajectory to end
inside the funnel loop. Suggested in [6], funnels are basically
FRSs that start from a big initial set. If the system is located
inside a funnel’s initial set, it can be provably driven to its
exit by its associated controller. The set of pre-computed
funnels, funnel library, can be used as building blocks for
safe trajectory. If a funnel’s entrance encompasses another
funnel’s exit, than the two funnels are sequentially composed
and act like a single funnel. Fig. 1 briefly shows how the
proposed planner runs. At an epoch, the planner finds the
global and local trajectories, the FRS of the local trajectory,



and a funnel loop that follows the local trajectory. A funnel
loop acts like a single funnel whose entrance encompasses
its exit, so the system can permanently stay inside the loop
without braking.

A. Contributions

The contributions of this paper can be summarized as
follows.
• We propose a trajectory planner that utilizes cyclic

funnel compositions to guarantee persistent safety and
feasibility.

• We present a forward reachability analysis method that
simulates the adversarial disturbance sequence in real-
time, in order to check whether the system can robustly
be driven into the funnel loop or not.

• The planner is scalable in execution time. It can be run
long without any need of additional memory, since we
discard unnecessary funnel loops once another is found.

• Our planner provides some resilience to map changes.
Since it creates the funnel loop only in the neighborhood
of the current configuration, persistent feasibility is still
guaranteed as long as map changes only occur outside
the existing funnel loop.

• The proposed algorithm is validated through an exper-
iment using an actual ground robot running an off-the-
shelf mapping software. The proposed planner achieves
computation time of less than 60 ms and can be run at
real-time.

B. Relevant Work

The influence caused by uncertainties is often overcome
by having a reachability-based robust motion planner. Such
planners pre-compute the FRS of the system, with known
disturbance bounds. The most accurate approximation of
the FRS is obtained by solving the Hamilton-Jacobi partial
differential equations (PDE) [9, 10], although solving them
requires extremely burdensome computation. For polyno-
mial dynamics, one can achieve faster FRS computation
by converting the complex PDE into a convex optimization
problem. Sum-of-squares (SOS) programming was used in
[6], and to further accelerate computation speed, positive
polynomials such as Bernstein bases can be used [11].
However, due to the limited expressivity of polynomials,
both entail over-conservatism as a trade-off. Some plan-
ners circumvent burdensome computations by using pre-
calculated asymptotic bounds on which feedback control
and disturbance effects are balanced [2, 12]. [13, 14] propose
tube-based model predictive control (MPC) approaches that
computes the bound online through min-max inequalities, but
they carry heavy computational load.

In the perspective of motion planning, [6] composes fun-
nels sequentially to build a trajectory in known environments
from start to goal. The funnels can be also composed in
runtime (not in the planning phase), but it requires the
robot to be able to perform a sudden stop in case of an
infeasibility. In [1] and [15], Hamilton-Jacobi reachability is
directly used. The partial differential equation is translated

to a more conservative but simpler form, so that an over-
approximated FRS can be computed in real-time along the
planned trajectory.

To take persistent feasibility into account, [16] identi-
fies inevitable collision states, which are instantaneously
collision-free but will unavoidably lead to collision with
a nearby obstacle. Avoiding such states provides safety.
[7, 17] have separate local planners to find a trajectory with
final stop condition within the known-free space. In [8],
the braking maneuver is explicitly considered to guarantee
persistent feasibility. [18] addresses the problem for multiple
airplanes. Each agent avoids collision and infeasibility by
having a virtual box on one side that fits a loiter pattern and
letting nothing inside the box. In [5], the system expands
the exploration tree consisting only of points from which the
agent can safely return to the home position. The algorithm
can be applied to systems with no brakes, but is vulnerable
to even small changes in obstacle configuration near home,
because this change may block many returning paths. In the
world of reinforcement learning, in [19], the agents learn
how to reset themselves when they encounter irreversible or
hazardous states. Penalizing resets will eventually lead the
agent to learn a reversible policy, although this is out of the
scope of this paper.

II. PRELIMINARIES

We start by considering a nonlinear discrete-time time-
invariant mobile robot system with state x ∈ Rn and input
u ∈ U ⊆ Rm under additive disturbance w ∈W ⊆ Rn. The
evolution of the system at any epoch t is governed by

x(t +1) = f (x(t),u(t))+w(t). (1)

The state space consists of two components: cyclic and non-
cyclic coordinates. Let x = (xc,xnc)∈Rn, where xc ∈Rd and
xnc ∈ Rn−d are the cyclic and noncyclic parts, respectively.
The system’s governing equation is assumed to be invariant
under translation in the cyclic coordinates, i.e., we can write

x(t +1) = f (x(t),u(t))+w(t)

= x(t)+ f̂ (xnc(t),u(t))+w(t),
(2)

where f̂ : Rn−d × Rm → Rn is a function only of non-
cyclic coordinates and input. In mobile robot systems, the
cyclic coordinates are usually their position in the Euclidean
workspace. The cyclic component can be obtained using the
projection map Π : Rn→ Rd :

xc = Π(x). (3)

The remaining parts of this paper assume that the cyclic
coordinates of the system is equal to the robot’s position,
hence collision checking can be done by just examining the
cyclic coordinates.

A funnel F = (I,E,X) is a tuple consisting of three
sets: entrance I ⊆ Rn and exit X ⊆ Rn in the state space,
encompassing shape E ⊆ Rd in the Euclidean workspace.
Mathematically, if x(t0)∈ I, then there exists an epoch t1 > t0
and u(t,x(t), · · ·) ∈ U ,∀t ∈ [t0, t1], such that x(t1) ∈ X and



Fig. 2: A schematic explanation of the proposed planning algorithm.
Green and red arrows denote that the corresponding step has
succeeded or failed, respectively. The funnel loop finding part is
marked using a red box.

Π(x(t)) ∈ E, ∀t ∈ [t0, t1]. In this paper, we consider funnels
that satisfy the following:
• The entrance I is of the form I = {(p,xnc) ∈ Rn | p ∈

Π(I),xnc ∈ Inc ⊆Rn−d}, where Π(I) = {p∈Rd | AI(p−
pI)≤ bI}. AI and bI are matrix and column vector with
appropriate sizes, respectively. That is, the constraints
for cyclic and noncyclic coordinates are decoupled, and
the cyclic coordinate part is a polytope. pI ∈ Rd is the
center of I, which is the starting point of the nominal
trajectory that traverses the funnel.

• The exit X is of the form X = {(p,xnc) ∈
X | ‖p− pX‖2 ≤ rX ,xnc ∈ Xnc ⊆Rn−d}, where pX is the
(cyclic) coordinate of the funnel exit, rX > 0 is the exit
radius on the cyclic coordinate.

• The encompassing shape E is a polytope, i.e., E = {p∈
Rd | AE p ≤ bE}, where AE is a matrix and bE is a
column vector, both with appropriate sizes.

Additionally, for the sake of simple description, we normal-
ize each row of AI and AE to be a unit vector.

We say that two funnels Fi = (Ii,Xi,Ei) and F j =
(I j,X j,E j) are sequentially composed if the entrance of F j
completely encompasses Xi, i.e.,

Xi ⊆ I j, (4)

so that starting in Ii guarantees the existence of a trajectory
that leads to X j. We denote this using the B symbol, i.e.,
FiBF j. If F1B · · ·BFnF and FnF BF1, the funnels form
a loop, which the system can persistently stay within.

III. ALGORITHM OVERVIEW

Our algorithm adds the following three steps to the global-
local trajectory planning algorithm mentioned in the intro-
duction: funnel loop candidate searching, forward reacha-
bility analysis, and funnel loop closure. In the funnel loop

Fig. 3: A graphical description of the funnel planning algorithm
(the red-boxed part of Fig. 2). The system is drawn as an airplane.
The obstacle areas are colored brown, and only the bright regions
are known to the system. The goal position is marked with yellow
arrow. a) A global path (blue curve) and local trajectory (red short
curve) are found using the global and local planners. b) A funnel
loop candidate is found by growing a tree of funnels. c) Forward
reachability analysis ensures that the local trajectory is free from
collision and safely leads the system into the first funnel’s entrance.
d) The funnel positions are adjusted to complete a closed loop.

candidate searching step, we find a sequence of funnels
which are expected to be adjustable in the cyclic coordinates
to form a valid loop. The forward reachability analysis
ensures that the planned local trajectory robustly drives the
system into the entrance of the first funnel, despite the effect
of disturbances. In the last step, the funnel positions are
adjusted so that the loop is closed while maintaining collision
avoidance and robustness of the local planner. As a result,
we always have a funnel loop trajectory, which consists of
a collision-free funnel loop and a robust local trajectory that
drives the system into the loop. The system can stay inside
the funnel loop as long as needed, before it finds a next valid
funnel loop trajectory.

A schematic explanation of this procedure is given in
Fig. 2. The proposed three steps are marked using a red
box. Fig. 3 provides a graphical explanation of the algorithm.
In the next section, we elucidate each step of the proposed
algorithm.

IV. ROBUST FUNNEL LOOP PLANNING

For an ordered set of nF funnels (F1 = (I1,X1,E1), · · · ,
FnF = (InF ,XnF ,EnF )) to form a valid loop, (4) should hold
for all neighboring index pairs (i, j) ∈ I= {(1,2), · · · ,(nF −
1,nF),(nF ,1)}. That is, to elaborate,

Xnc·i ⊆ Inc· j ∀(i, j) ∈ I (5)

and
AI j(pXi − pI j)≤ bI j − rXi ∀(i, j) ∈ I. (6)

The goal of this section is to find nF funnels, each of
them being a translated funnel from the funnel library F =
{FL·1, · · · ,FL·nF}, such that the funnels satisfy (5) and (6).
We tackle this through a three-step process: in step 1, we
find the funnel sequence that satisfies (5) completely and (6)
roughly using a graph search algorithm (section IV-A); in



Fig. 4: The FRS of a planar quadrotor system with state
(x,y,θ , ẋ, ẏ, θ̇) ∈ R6 and input ( f ,τ) ∈ R2 in a flipping maneuver
shown in the right, where x, y, and θ are the quadrotor’s horizontal
displacement, altitude, and pitch angle, respectively. The input
consists of thrust f and pitching torque τ . The blue bounds represent
the estimated FRS, and black curves are the error trajectories caused
by adversarial disturbance.

step 2, we confirm that the local trajectory robustly leads
to the entrance of the funnel trajectory candidate of step 1
(section IV-B); and in the last step, we adjust the positions of
the funnel path candidate to completely satisfy (6) (section
IV-C). This is possible owing to the funnel property that
the constraints in the cyclic and noncyclic coordinates are
decoupled.

A. Funnel Loop Candidate Searching

We find a cyclic funnel path candidate by constructing and
traversing a tree of properly connected funnels. First, the tree
is initialized with the reachable set of the local trajectory
as the root node. Given a node X = Xc×Xnc ⊆ Rn where
Xc = {p | ‖p− pX‖2 ≤ rX} ⊆Rd , the funnels that satisfy (5)
are chosen and are translated such that the cyclic coordinates
of the entrance and pX are matched. If a translated funnel is
collision-free, its exit becomes the child node. We continue
this process until we find a node that is sufficiently close to
the root node in the cyclic coordinates, and is completely
encompassed by the first funnel’s entrance in the noncyclic
coordinates. The criterion used to determine whether a node
is sufficiently close may vary depending on the system or the
environment, and can be heuristically selected to maximize
the success rate of finding a valid funnel path. Any off-the-
shelf tree searching algorithm can be used in this step.

B. Forward Reachability Analysis

After finding a funnel cycle candidate, the validity of the
local planning results is checked. The checking procedure
consists of two steps: collision avoidance, and funnel com-
posability.

Assume that we are given a memoryless feedback con-
troller u(t) = k(t;x(t),xr(t)) and the local trajectory xr(t) ∈
Rn for t ∈{0, · · · ,T}. Then, we have the time-varying closed-
loop error dynamics

e(t +1) = f (xr(t)+ e(t), k(t;xr(t)+ e(t),xr(t)))

− xr(t)+w(t)

= h(t;e(t))+w(t)
(7)

where the error e(t)∈Rn is defined as e(t) = x(t)−xr(t), and
h is the function that describes the closed-loop dynamics. We

assume that the disturbance w(t) is bounded by w(t) ∈W=
{w ∈ Rn | Aww ≤ bw}. The goal of this step is to find the
sequence of disturbance w(t) for t ∈ {0, · · · ,τ − 1} for an
epoch τ ∈ {1, · · · ,T}, which drives the system in the way
that maximizes a given objective function a : Rn→ R. That
is, we solve the following optimal control problem:

max . a(e(τ))

s.t. e(t +1) = h(t;e(t))+w(t) ∀t ∈ {0, · · · ,τ−1}
e(0) = x0− xr(0)
w(t) ∈W ∀t ∈ {0, · · · ,τ−1}.

(8)
To solve this, we use a modified version of the differential
dynamic programming (DDP) algorithm that only propagates
the first-order gradients, which is an extension of [20] to
nonlinear systems.

First, the algorithm initializes with the disturbance se-
quence w(t). The error sequence e(t) is determined by
simulating (7) forwards. Let gt denote the gradient of the
objective function with respect to w(t), on the forward-
passed trajectory. It is straightforward to find out that

gτ−1 =

(
∂a
∂e

(e(τ))
)>

. (9)

We can now backward-pass gt using

gt−1 =

(
∂e(t)

∂e(t−1)

)>
gt =

(
∂h(t−1; ·)

∂e
(e(t−1))

)>
gt ,

(10)
which can be derived using the chain rule. The disturbance
sequence is updated using the steepest ascent by solving the
following quadratic programming (QP) problem:

w(t)′ = argmax.
w∈W

g>t w+α
∥∥w−w(t)

∥∥2
2 , (11)

where w(t)′ is the new value for w(t). The weight α ≥ 0
penalizes drastic changes in w(t) and prevents the problem
from falling into a local optimum. We found that in many
cases, setting α = 0 is sufficient: in such cases, the problem
becomes a linear programming (LP) problem. Since the
domain W is the same in every update, we can pre-compute
the vertices and their connectivity in the offline phase in order
to enhance the computation speed. Unlike DDP methods
used in trajectory planning or MPC, the backward pass
can be calculated in parallel, since (11) does not reuse the
previous calculation results. Fig. 4 shows an example FRS
calculated using the proposed method for linear objective
functions.

Now, we denote the entrance of the first funnel by I1 =
{(p,xnc) |AI1 p≤ bI1 , gnc(xnc)≤ 0}, where AI1 = [a>1 ; · · · ;a>n1

]
and bI1 = [b1; · · · ;bn1 ]. For FRS-funnel composability check,
the objective of (8) is set to a(e) = gnc(xr·nc(T )+ enc) ≤ 0
and a(e) = a>i (xr·c(T )+Π(e))≤ bi, for noncyclic and cyclic
coordinates, respectively. The cyclic composability check
should yield the translatable margin for the first funnel as
AI1δ p ≤ bFRS. For each τ ∈ {0, · · · ,T}, collision with the
environment is also checked. For that, we construct a single
safe flight corridor (SFC) in cyclic coordinate space around



Fig. 5: A graphical description of Algorithm 1. a) The target
funnel encompassing shape E is depicted blue. The purple squares
represent the nearby occupied (or unknown) voxels in the open
set. Voxels removed from the open set are colored gray. b) First,
an encompassing circle (or sphere) of E is found to obtain cE .
c) Starting from the nearest voxel (red), two points p and v are
obtained to find a wall (depicted using blue line). Voxels outside
the wall are removed from the open set. d) After finite iterations,
open set is emptied, and the obtained walls form a convex region
in which the funnel can freely translate (yellow polygon).

the local trajectory using [21]. SFC is a large convex region
built in the obstacle-free space, which we can use to bring
a nonconvex trajectory optimization problem to a slightly
more conservative but convex domain [21, 22]. Denote the
obtained SFC by SFC = {p | ASFC p ≤ bSFC} where ASFC =
[a>SFC·1; · · · ;a>SFC·nSFC

]. Similarly, collision can be checked by
letting a(e) = a>SFC·iΠ(e).

C. Funnel Loop Closure

Let the result from the previous step be denoted by an
ordered set (F1, · · · ,FnF ), which is a valid funnel compo-
sition (but yet to be loop-closed). The objective of this step
is to adjust the given funnels along the cyclic coordinates,
so that FnF and F1 are connected, while not losing validity.
We consider the situation in which Fi shall be translated
by δ pi ∈ Rd . Two constraints should be satisfied for each
translation: collision avoidance, and funnel composability.

1) Colision Avoidance Constraint: For collision avoid-
ance, we propose an algorithm that generates a convex
adjustable area of a funnel, in which the funnel can translate
without collision. We first represent each obstacle as a convex
shape in Rd space, which is a voxel in most cases. The
unknown space is also considered an obstacle, because the
funnel loop must be built within regions known to be free.
Our algorithm (algorithm 1) builds linear inequalities, one at
a time, whose intersection constructs the adjustable margin.
It initializes with the unadjusted encompassing polytope E of
a funnel, and the open set that contains neighboring obsta-
cle yet to be considered. The smallest sphere center
in line 2 returns the center cE of the smallest sphere that
completely covers E. The loop in line 3 iterates over the
elements of open set, starting from the nearest obstacle
from cE , and finds a separating hyperplane between the
funnel and the obstacle. Using the hyperplane, we find the
linear constraint written {δ p ∈ Rd | a>δ p ≤ b} (a ∈ Rd

Algorithm 1 Funnel adjustable area computation

Input: Funnel bounding polytope E,
the set of nearby occupied voxels {V1, · · · ,VN}

Output: AA, bA
1: open set ←{V1, · · · ,VN}
2: cE ← smallest sphere center(E)
3: while open set is not empty do
4: V ← element of open set closest to cE
5: (p,v)← argmin

p∈E,v∈V
‖v− p‖2

6: a← (v− p)/‖v− p‖2, b←‖v− p‖2
7: Remove V from open set.
8: for all V ′ ∈ open set do
9: if a>(v′− v)> 0 ∀v′ ∈V ′ then

10: Remove V ′ from open set.
11: end if
12: end for
13: AA← [AA; a>], bA← [bA; b]
14: end while

and b ∈ R), which guarantees E to be collision-free when
translated by δ p. With an obstacle region V , we first find
two points, each in E and V , that are closest, by solving a
QP problem with 2d decision variables:

min.
p,v∈Rd

‖p− v‖2
2

s.t. p ∈ E, v ∈V.
(12)

Since the two shapes are convex, we can conclude that E can
be translated in the direction of v− p by distance ‖v− p‖2
while not colliding with V , i.e.,(

v− p
‖v− p‖2

)>
δ p = a>δ p ≤ ‖v− p‖2 = b (13)

provides a collision-avoiding bound for δ p. We then remove
obstacles that are farther in the v− p direction than V from
the open set, as they are already not reachable by E when
(13) is satisfied. The obtained a> and b are added to the
rows of AA ∈RnA×d and bA ∈RnA This process iterates until
the open set is emptied. A brief graphical explanation is
provided in Fig. 5.

2) Cyclic Composability Constraint: For cyclic compos-
ability, (6) is directly used. Let FiBF j. A point p lies within
the entrance of F j translated by δ p j if

AI j(p− pI j −δ p j)≤ bI j . (14)

This should be satisfied by the exit of Fi translated by δ pi,
with margin rXi .

AI j(pXi − pI j +δ pi−δ p j)≤ bI j − rXi (15)

Additionally, the first funnel entrance should cover the FRS
of the local trajectory:

AI1

(
pI1 +δ p1−Π(x(T ))

)
≤ bFRS (16)



Fig. 6: The ground rover used in the experiment.

Subject to the mentioned constraints, the following QP
problem is solved to find feasible adjustment while mini-
mizing jolty motions when switching between funnels:

min. ∑
(i, j)∈I

wi, j

∥∥∥(pXi +δ pi)− (pI j +δ p j)
∥∥∥2

2

+w0
∥∥Π(x(T ))− (pI1 +δ p1)

∥∥2
2

s.t. Ak
Aδ pk ≤ bk

A ∀k ∈ {1, · · · ,nF}
AI j(pXi − pI j +δ pi−δ p j)≤ bI j − rXi ∀(i, j) ∈ I
AI1(pI1 +δ p1−Π(x(T )))≤ bFRS

(17)
where Ak

A is the adjustable area for the k-th funnel and
wi, j, w0 ≥ 0 are nonnegative weights. The optimization
problem (17) minimizes the magnitude of jump required in
switching between funnels in the cyclic coordinates. A good
way to select the weights is to more heavily penalize jumps
with lower indices, since they are more likely to be actually
traversed than the ones with bigger indices.

V. EXPERIMENT RESULTS

To validate the proposed planning algorithm, an experi-
ment was conducted using a ground rover shown in Fig. 6.
The rover is an Ackerman steering robot equipped with
an onboard computer (Intel NUC), a planar LiDAR sensor
(YDLIDAR X4), and an IMU. The onboard computer has
a 6-core CPU with base clock frequency of 1.10 GHz and
16 GB memory. The LiDAR scans the environment at 10
Hz. The planning algorithm is implemented in C++, and
OSQP [23] is used for solving QPs. For real-time mapping
and localization, Cartographer [24] is used. To provide a
good initial guess to the SLAM module, pose estimates from
the OptiTrack motion capture system and Intel Realsense
Tracking Camera T265 are used. The map is updated every
second.

The kinematics of the ground rover system is governed by

TABLE I: The values of the parameters used in the experiment

Parameter Value

δ t 0.01 s

Kp [ 1.2, 0, 0; 0, 6.5, 0.4 ]

Kd [ 0.15, 0, 0; 0, 3.0, 0 ]

u [ 0 m/s; −1.1 m−1 ]

u [ 1.0 m/s; 1.1 m−1 ]

Fig. 7: The first five funnels from the funnel library used in the
experiment are depicted. The funnel library consists of 80 funnels
in total, where the remaining 75 of them are the rotated ones the
five funnels depicted in this figure. Dotted black lines represent the
actual trajectory recorded from the funnel-building experiment.

the following bicycle-model equation:

px(t +1) = px(t)+ v(t)cosθ(t) ·δ t +w1(t)

py(t +1) = py(t)+ v(t)sinθ(t) ·δ t +w2(t)

θ(t +1) = θ(t)+ v(t)κ(t) ·δ t +w3(t),
(18)

where x(t) = [px(t); py(t);θ(t)]∈R3, u(t) = [v(t);κ(t)]∈R2,
and w(t) = [w1(t);w2(t);w3(t)]∈R3 are the state, input, and
disturbance vectors, respectively. The time discretization step
δ t is a positive constant. The cyclic and noncyclic coordi-
nates are xc(t) = [px(t); py(t)] ∈R2 and xnc(t) = [θ(t)] ∈R1,
respectively. We use the feedback controller in the following
form to find the set point in speed vs(t) and turning rate
κs(t):[

vs(t)
κs(t)

]
= sat

ur(t)−Kp ·

∆ f
∆l
∆θ

−Kd ·
d
dt

∆ f
∆l
∆θ


 , (19)

where Kp and Kd are gain matrices in appropriate sizes, ∆ f
and ∆l represent the forward and leftward displacements of
the robot measured from the reference trajectory, respec-
tively. ∆θ is the deviation of the heading angle θ with
respect to the reference. The function sat : R2 → R2 clips
the magnitude of the control commands to u≤ u(t)≤ u. The
set points are forwarded to the low-level controller, which
converts the set points to motor commands. The actual values
of the parameters are summarized in Table I.

To make the experiment more challenging, we restrict the
speed of the reference trajectory to be fixed at 0.5 m/s, and
the turning rate (curvature) is limited to be less than 1.1 m−1.
We however allow small jumps in the reference trajectory,
and the tracking error due to jumps or external force is
considered disturbance. The funnels and disturbance bound
used in the experiment are obtained through a preliminary
experiment, in which the tracking error is measured while
successively running randomly chosen nominal trajectories.
Fig. 7 shows the first five funnels used in the experiment,
projected onto the cyclic coordinates. For the global planner,
jump point search (JPS) [25] is used. The local planner is
sampling-based: we keep a trajectory library consisting of 7
local trajectories and select on that best tracks the global



(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Fig. 8: Three scenarios tested in the experiment. (a) The first scenario consists of a corridor with both ends open. (b) The second also
has a corridor, whose one side is however blocked. (c) The last environment consists of boxes sized about a meter in width and depth.
One of them (red-circled box) is manually placed and removed repeatedly during the experiment.

Fig. 9: The trajectory snippets recorded during the experiment. The
goal positions are marked using yellow arrows. Each trajectory
(black curve) starts from a red circle (•) and ends at an arrow
head (I).

trajectory. The A? algorithm is employed for the funnel
loop candidate searching step, as it was one of the fastest
among competing algorithms when used in the authors’
implementation.

The experiment consists of three scenarios. In each sce-
nario, the robot runs in different environments, which are
shown in Fig. 8. The goal positions change over time, and
are given manually. In the experiment, the robot avoids the
obstacle despite large tracking error, whose positions are a
priori unknown, while keeping its (tracking) reference speed
at 0.5 m/s. The following subsections provide discussions
about some important snippets taken from the experiment
results.

1) Goal in Known and Reachable Space: If the goal is
given in known and reachable space, the planner acts like a
normal receding horizon planner, because the local trajectory
gets replaced by a new local trajectory before the robot enters
the funnel loop. Fig. 9-(a) shows how the robot reaches the
goal in environments where the funnel loops could be found
easily.

2) Goal in Unknown but Reachable Space: Fig. 9-(b)
shows the trajectory of the robot when it is told to reach the
goal in unknown space behind a wall. The robot cannot reach
the goal at once, but while staying inside the funnel loop, it
naturally explores the unknown space to build a funnel loop
around the wall (Fig. 10).

3) Goal in Enterable but Not Escapable Space: Goals
marked in Fig. 9-(c) are reachable in the myopic sense but
not potentially safe, because there is not enough space for the

Fig. 10: Funnel loops generated while trying to reach the goal in
unknown space, behind the wall. The robot’s poses are marked us-
ing thin yellow arrows. Brown lines represent the global trajectories
that lead to the goal position at the big yellow arrow. Each funnel
loops start with a local trajectory marked using a red curve.

robot to turn around and escape. While funnel loops cannot
be found in such cases, the robot does not reach the goal.

4) Nonstatic Environment: The third scenario is designed
to verify the resilience of the proposed algorithm to small
map changes. The box shown in Fig. 8-(c) is placed and
removed repeatedly during the experiment. Fig. 11 shows
the recorded trajectory during a 3-minute run, during which
the box was placed and removed twice. The robot succeeded
to generate safe trajectories despite map changes, and also
utilized the freed area during the box was removed.

Fig. 11: Trajectory data recorded during the third scenario. The
position of the box is shown as the magenta rectangle. Red curves
are the trajectory with the box in place, while blue curves are run
while the box was removed.



A. Computation Time Analysis
For the sake of vehicle stability, the planner runs at 5 Hz

in the experiment. However, a complete planning procedure
finished in 60 ms (over 16 Hz) in average: 3 ms for global
path planning, less than a millisecond for local planning,
47 ms for FRS calculation, 3 ms for funnel loop candidate
searching, and 6 ms for the funnel loop adjustment step.
B. Remarks on Implementation

The A? algorithm is known to become faster with an
optimistic heuristic, if optimality can be sacrificed. This is
precisely the case, since the funnel loop is only used when
the trajectory planning fails to find the next trajectory update
and hence there is very little need to make the cyclic funnel
sequence short. Thus, we used the heuristic which is ten
times the consistent heuristic, which reduced the number of
searches roughly in half.

Although the proposed algorithm can be run in real-
time, the computation time is non-negligible. Thus, the local
trajectory should start at the future state expected after the
computation time estimation.

VI. CONCLUSION

In this paper, we presented a planning algorithm that
can be run under disturbances in unknown environments,
while guaranteeing safety without emergency brakes. We first
start by planning global and local trajectories. A loop of
sequentially composed funnels is constructed starting from
the end of the local trajectory. Requiring the FRS of the local
trajectory to lie within the funnel loop entrance guarantees
that the system can be driven robustly into the funnel loop, in
which it can stay permanently without collision, seeking for
the chance of trajectory update. Experiment results showed
that the planner can generate safe trajectories in real-time on
onboard computers. It also demonstrated that the proposed
algorithm is resilient to map changes, as the funnel loop is
built locally.

Future work may include: enhancing the global planner so
that it does not repeat planning through unreachable spaces;
exploiting other symmetries in the funnel planning step, e.g.,
rotation; and extending this algorithm to multi-agent systems.
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