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Autonomous Excavator for Precise Earthcutting and
Onboard Landscape Inspection
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Abstract—Autonomous excavator systems can alleviate the
issues caused by the shortage of skilled labor forces and
increasing labor costs. For autonomous excavation, real-time
landscape estimation, excavation path generation, control, and
precise landscape inspection are all essential. In this article, we
propose and experimentally validate an integrated autonomous
excavator system incorporating all these elements. Specifically,
unlike previous research, we introduce a sensor arrangement
capable of sufficiently covering the regions of interest regardless
of the inclination of the target landscape, a motion planning
method that satisfies geometric and physical constraints, and a
precise post-excavation inspection module using only onboard
sensors. The proposed methodology was experimentally validated
using a real 30-ton hydraulic excavator. It successfully performed
a cutting task on an upward slope with 45◦ inclination and
achieved a centimeter-level accuracy through autonomous repet-
itive excavation; also, the proposed post-excavation inspection
method demonstrated sub-centimeter precision within seconds
using onboard sensors only.

Index Terms—Hydraulic excavator, automation in construc-
tion, motion planning, landscape inspection, computer vision.

I. INTRODUCTION

THE need for automation in construction has been con-
sistently growing due to rising labor cost, lack of skilled

laborers, and stricter safety requirements. This has led to active
research both in the industry and the academia, including
autonomous driving for heavy equipment vehicles [1], au-
tonomous trenching for hydraulic excavators [2]–[4], dry stone
wall construction [5], and semi-automation in wheel loader
material loading [6]. Specifically, tasks like large-scale land
cuttings and precise surface grading, essential at the beginning
of most construction sites, can benefit from automation as they
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Fig. 1: The 30-ton hydraulic excavator hardware considered in this research.
The proposed AES is capable of performing earthcutting and post-excavation
inspection works fully autonomously using only onboard sensors.

involve repetitive actions requiring precision and accuracy.
These operations typically consist of two subtasks: earthcut-
ting using excavators and post-excavation topographic inspec-
tion via external equipment. Traditionally, both are carried
out by skilled human workers who must sometimes risk their
safety in hazardous workspaces full of massive equipment. A
fully onboard integrated autonomous excavator system (AES)
which reduces the need for external equipment and human
effort, therefore, possesses huge potential and advantages.

The requirements for the first subtask, earthcutting, are
multifaceted. First, a decision-making module that determines
where to dig and generates the path for the arm part are
needed. This module should be capable of creating a digging
profile and the arm path within seconds to ensure uninterrupted
workflow. Secondly, to facilitate the aforementioned path
planning, a perception functionality providing information
about the current landscape is necessary. This perception
functionality needs not be overly precise considering the size
and control accuracy of the hardware, and it should be capable
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Fig. 2: The overall flowchart of the proposed AES. Its software components include (a) the real-time landscape estimation module, the motion planning
module with (b) excavation path generation and (c) path tracking functionalities, and (d) the precise landscape inspection module.

of capturing real-time changes in the terrain made by the
digging and dumping actions. Lastly, to track the generated
path despite disturbing forces such as bucket-soil interaction,
a local trajectory planner offering real-time tracking should
be in place. This local planner should take into account the
physical limitations of the excavator, such as power and arm
speed constraints.

The second subtask, post-excavation landscape inspection,
aims to verify whether the targeted terrain has been accurately
shaped. This subtask is conducted separately from earthcut-
ting, in order to ensure the integrity of the assessment process
and to prevent any potential influence from earthcutting mo-
tion. Construction sites typically employ specialized surveying
personnel, who submit the results as evidence of completion.
Although construction standards may vary by region and the
type of task, a typical goal is to achieve construction accuracy
within a few centimeters of the target terrain. To meet this
requirement, the inspection module should be able to perceive
the landscape with an accuracy level of less than 1 cm. This
should be carried out within seconds to prevent delay in the
construction process.

Despite several attempts both in the industry and the
academia to implement a fully-autonomous excavator, none
of the existing solutions have performed both motion gener-
ation and post-excavation inspection onboard [3]–[5]. In this
research, we present an AES (Fig. 1) that combines real-time
landscape estimation, onboard motion generation, and accu-
rate post-excavation topography inspection–all achieved solely
through onboard apparatus. Our system improves existing AES

solutions in the following perspectives:

• Sensor configuration: Our sensor configuration can cap-
ture the region of interest (ROI) within their field of
view (FOV) regardless of the specific task at hand. This
sensor configuration employs two 3D light detection and
ranging (LiDAR) sensors mounted at different parts of the
excavator. A stereo camera attached at the bottom of the
boom provides a sufficiently large FOV. Thanks to this
configuration, we can measure the ROI of the workspace
more densely on any terrain slope.

• Landscape estimation: The proposed AES is capable of
onboard-performing real-time estimation of the surround-
ing landscape, which facilitates digging profile genera-
tion and arm-ground collision avoidance. The proposed
Kalman-filter-like update rule provides a reliable estimate
of the environment, even during interaction between the
bucket and the ground.

• Constraint-satisfying motion generation: We propose
hierarchical motion planning software that allows the tra-
jectory of the excavator arm to adhere to both geometric
(related to the shape of the excavation profile) and physi-
cal (related to the hardware’s actuation limits) constraints.
A high-level grid-based path planning algorithm running
faster than 1 Hz computes an excavation path considering
the geometric constraints, and a low-level real-time MPC
running at 10 Hz generates a time-allocated trajectory that
tracks the excavation path while satisfying the physical
constraints.

• Post-excavation inspection: Our AES is also equipped
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with an onboard landscape inspection functionality that
uses a stereo camera. This enables verification of the
work quality without the need for additional equipment
or workers. Making the best use of the excavator’s
configuration and motion, it is capable of examining
the completed landscape within a few seconds at sub-
centimeter-level accuracy even under severe vibration
and impact caused by the excavation work. To the best
of the authors’ knowledge, it is the first autonomous
heavy equipment with an onboard functionality of post-
excavation landscape inspection, distinct from real-time
landscape estimation during excavation.

We demonstrate the performance of the proposed integrated
AES with actual hardware in a 45◦ upward slope-cutting
scenario. The proposed AES successfully shaped the desired
landscape and conducted a post-excavation topography inspec-
tion with a mean error of less than one centimeter.

II. RELATED WORK

Fully-autonomous excavators are receiving considerable at-
tention from both industry and academia. In the industry, Built
Robotics provides an autonomous safety-aware trenching so-
lution incorporating sensors and software [2]. In the academia,
[3] provides an integrated framework including sensing, plan-
ning, and control for a fully autonomous excavator, and shows
applicability in multiple tasks involving trenching, material
loading, and rock removal. Similar tasks were also performed
using a walking excavator [4], [5] in a fully autonomous
manner. However, none of the attempts tackled integration of
earthcutting and post-excavation topographic inspection. In the
remainder of this section, we introduce related works in the
perspectives of excavator sensor configuration, environment
perception, and excavation motion generation.

Thanks to their easy usage and reliability of measurement
data, 3D LiDAR sensors have been widely employed for
autonomous excavators. In deploying them, existing works on
system integration [3], [5], [7]–[9] installed one or two 3D
LiDAR(s) on top of the cabin. However, in the case of slope
cutting, such configuration may have limited FOV, and the ROI
for excavation may not be fully covered. In [5], [10], a drone
with a camera was used, but additional burden of operating
these equipment naturally follows. To achieve self-contained
autonomous excavation, a strategy that ensures a large FOV
without external equipment is desirable.

In a typical construction site, landscape inspection should
be conducted separately after the earthcutting work, because
it serves as confirmation of completion of the task. Although
the actual value varies depending on the type of construction
work, inspection should be done at an accuracy of less than
a centimeter. While this precision is typically achieved by
using land surveying solutions [11], their drawback lies in the
need for separate workers and equipment. Furthermore, these
solutions are expensive and can take tens of minutes, even
for scanning a small area up to 10 m2. Existing autonomous
heavy equipment [3], [5], [7]–[9] utilized 3D LiDAR sensors
to perform a perception of the surrounding landscape, but
whether they are accurate and reliable enough to replace the

inspection process is still unclear, as there was little analysis
on that.

Excavation trajectory should abide by both 1) geometric
constraints such as vehicle-ground collision avoidance, and 2)
physical constraints including power and flow rate limits, as
violation of any of these may lead to dangerous situations such
as tripping over or failure of accomplishing the given task.
Although many studies considered the motion constraints, they
either admitted constraint violation [4], [7], [12] or partially
omitted the physical constraints [13], [14]. Only a few of
them such as [15], [16] addressed both types of motion
constraints; unfortunately, they were tested only in simulation
environments. Their robustness against noisy data and real-
time applicability (in terms of computation time), therefore,
were not validated with real-world hardware.

III. SYSTEM OVERVIEW

The proposed AES is capable of completing an excavation
task without human intervention, where we refer a single
excavation task to the whole process of achieving the desired
topography, after the base part (crawler or wheels) has settled
to a designated place, and before it leaves from the location.
More specifically, an excavation task in our AES consists of
the following process.

1) The excavator repeats dig cycles to make the landscape
resemble the desired topography.

2) If the current landscape becomes sufficiently close to the
desired one, a grading process using the bucket tip is
carried out for precise landscape shaping.

3) Using onboard sensors only, the excavator conducts pre-
cise landscape inspection.

4) If the inspection result has reached satisfactory precision
and accuracy, the task terminates.

To successfully complete such an excavation task, we design
the proposed AES to have the following four features:

• uncrewed-controllable hydraulic excavator hardware
equipped with an onboard computer and sensors,

• a real-time landscape estimator providing information
about the surrounding environment,

• a motion planning algorithm generating and tracking the
motion of the excavator arm, and

• post-excavation landscape inspection software based on
computer vision.

During the task, the real-time landscape estimation module
consistently provides real-time estimates of the current land-
scape, given information from the onboard sensors attached to
positions carefully selected for better perception capabilities.
Until the real-time observed landscape sufficiently resembles
the desired landscape, the motion planning module iteratively
computes an excavation path and a trajectory that tracks the
generated path. Then, the precise inspection software examines
the completed topography after the grading process. Fig. 2
provides a brief overview of how the four features collaborate
to complete each step of the excavation task. In the following
four sections, we delineate the details of each feature.
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Fig. 3: (a) The hardware components of the proposed AES consist of an unmanned-controllable hydraulic excavator with onboard cameras and 3D LiDAR
sensors. The excavator kinematics can be understood as a robotic manipulator with five joints (crawler, cabin, boom, stick and bucket) connected in series
through revolute joints. A stereo camera is attached on the boom, and two 3D LiDARs are attached on the cabin and the boom, respectively. The yellow
labels denote the excavator parts, while the red ones represent the sensors. (b) The configuration of the employed sensors: two 3D LiDARs and two cameras.
Sensor configuration is carefully selected to secure a uniformly and sufficiently large FOV in various arm (boom, stick, and bucket) configurations. This is to
always include the ROI inside the FOV during slope cutting with arbitrary inclination, as shown in (c). (d) Sensor calibration. The numbering indicates the
order of the calibration. Thanks to the carefully selected sensor configuration, sensor calibration can be performed with only one or two human worker(s),
since the FOVs of the onboard sensors overlap in the ROI on the ground, which is easily accessible without additional equipment such as ladders. In addition,
for the whole calibration process, a checkerboard is only required as the calibration target.

IV. HARDWARE

A. Hydraulic Excavator

As shown in Fig. 3 (a), the kinematic model of the ex-
cavator consists of five components: crawler, cabin attached
to the crawler with a vertical revolute joint, and the arm
part composed of three serially-connected rigid bodies (boom,
stick, and bucket). We call the rotation of the cabin with
respect to the crawler the swing motion. Four hydraulic joints
actuating swing, boom, stick, and bucket can be autonomously
manipulated using signals relayed from an onboard computer.

B. Sensor Configuration

To obtain kinematic information, inertial measurement units
(IMUs) mounted on the cabin, boom, stick, and bucket mea-
sure the configuration of the arm part. A rotary encoder
in the revolute joint connecting the crawler and the cabin
measures the swing angle. Angle measurements are utilized in
excavation path generation and control, while cylinder pres-
sures measured by sensors inside each hydraulic cylinder are
employed in defining a power constraint in motion planning.

As shown in Fig. 3 (b), two 3D LiDARs and a stereo camera
are used. To ensure large FOV during slope cutting, we attach
one 3D LiDAR (i.e., boom LiDAR) at the bottom of the boom
where the rotating axis of the boom LiDAR is parallel to
the rotating axis of the boom. Since the boom LiDAR moves
along with the boom, dense pointcloud data in the ROI can
be obtained for landscapes with any inclination as shown in
Fig. 3 (c). This allows the excavator to well estimate the

surrounding landscape during excavation without the need for
an intentional boom motion.

To additionally provide consistent observation of the ROI
regardless of the motion of the boom, we attach the other
3D LiDAR (i.e., cabin LiDAR) to the side of the cabin with
a slight tilt angle. The cabin LiDAR compensates the boom
LiDAR, and the landscape can be measured in the distance
without severe occlusion by the arm part. By using cabin and
boom LiDARs together, a denser pointcloud at the ROI can
be obtained.

To obtain precise and accurate environment reconstruction
during landscape inspection, we utilize the stereo camera with
the boom and cabin LiDARs. A stereo camera atached at the
bottom of the boom alongside the boom LiDAR provides a
sufficiently large FOV, regardless of the inclination of the
landscape the excavator is facing. This is because, during
inspection, the boom angle no longer needs to be manipulated
for excavation but only for inspection. As we discuss in the
remaining sections, the use of LiDAR data in environment
reconstruction provides good prior knowledge of the landscape
and therefore enhances computation speed.

C. Sensor Calibration

Note that all the sensors’ FOVs overlap near the ROI which
is easily accessible by human workers without the need for
a special equipment such as a ladder, as shown in Fig. 3
(c). This allows the calibration of the attached sensors to be
done efficiently by only one or two workers, thereby reducing
human effort, especially considering that the arm reach of the
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equipment typically ranges up to 10 m. The whole calibration
process only requires a single checkerboard as the target.
Using a checkerboard, we estimate the intrinsic parameters
of cameras and extrinsic parameters between sensors, and
between each sensor and the excavator: camera-to-camera
(C2C, i.e., within the stereo camera), LiDAR-to-camera (L2C),
LiDAR-to-LiDAR (L2L), and sensors-to-vehicle (S2V) cali-
bration, as shown in Fig. 3 (d).

C2C and L2L calibrations are performed using [17] and
[18], respectively. The extrinsic parameters between the 3D
LiDARs and the stereo camera are estimated by the automated
calibration target detection algorithm proposed in [18] and
solving an optimization problem to minimize the distance
between target planes estimated by each sensor measurement
in the same epoch. Then, through L2L calibration, we calculate
the relative pose between the two 3D LiDARs for various
boom angles. With the obtained relative pose, we solve for
boom angle (θ) at each epoch and the distance (rl) from the
boom rotation axis to the boom LiDAR. Finally, the S2V
extrinsic calibration is performed by using poses of cabin
LiDAR and boom LiDAR with respect to the frame {b0} on
the boom’s rotation axis. As a result, relative poses between
all sensors and the vehicle can be calculated for any boom
angle measured by IMU attached to the boom.

V. REAL-TIME LANDSCAPE ESTIMATION

For real-time landscape estimation, we maintain a grid-
based 2.5D elevation map and update it in real-time using 3D
LiDAR sensor measurements similar to [7]. Such estimation
inheres the following challenges:

• Undesirable 3D LiDAR points (not from the landscape)
can be observed by various disturbing factors including
dust in construction, soil falling from the bucket, and the
excavator itself.

• The shape of the ground may change through the use
of a bucket (excavation work) and even when there is
no excavation, due to spontaneous micro-scale landslips
caused by local slope.

To address the first challenge, we first filter out body-occluded
points for every incoming 3D LiDAR pointcloud data. This
rejection is done by considering the kinematics and geometric
model of the excavator: As shown in Fig. 4 (c), any 3D
LiDAR point falling inside any one of the box-shaped regions
is rejected.

Although the proposed point rejection method sorts out
most of the undesired points, there may still exist many non-
rejected points. They originate mainly from the mechanical
vibration of the sensor base or parametric error between
the geometric model and the actual excavator. Also, during
dumping, the falling dirt would produce undesirable 3D Li-
DAR points which the above method cannot properly reject.
Moreover, the deformation of the landscape itself consistently
occurs throughout the excavation task, necessitating a separate
technique that is capable of capturing landscape changes in
real-time.

To address the concerns, we assume that the landscape fol-
lows a certain stochastic dynamics model, and run a Kalman-
like filter based on this dynamics. The whole 2.5D elevation

map is considered as a dynamic system, with the elevation of
the cells being its state. Let us denote the elevation of cell c
at time tk by xc

k. Then, xc
k+1 (the elevation of the cell at the

next time epoch tk+1) is determined by the following update
rule.

xc
k+1 =

{
xc

bucket + uc
k (A)

xc
k + wc

k (otherwise),
(1)

where the update case (A) occurs if the bucket tip has swept
below the ground level at elevation xc

bucket on the cell between
time tk and tk+1, and uc

k, wc
k are white Gaussian noises with

variance Qu and Qw, respectively.
Since the noises uc

k and wc
k represent the discrepancy

between the model and actual elevation level, the values of
Qu and Qw can be understood as measures indicating how
unpredictable the landscape changes with respect to time. For
example, with small Qu and Qw values, the estimator believes
that the landscape tends to remain still, and with larger values,
it assumes that changes in the landscape (e.g., micro-scale
landslips) occur more frequently, thereby relying more on
recent measurements given from the LiDAR sensors. In case
the actual values of noise cannot be directly measured, the
values of Qu and Qw can be estimated statistically.

For filtering, each cell is assigned not only the estimated
expectation of its elevation but also the estimation variance.
Initially, every cell is assigned infinite variance and zero
expectation, although the expectation has no significance under
infinite variance. Let a non-rejected 3D LiDAR point be
included in cell c with elevation y. Since one can presume that
a 3D LiDAR point closer to the center of the cell will better
represent the true elevation at the cell (i.e., the elevation at the
center of the cell), we assume that y follows the model

y ∼ N (xc
k, (1 + C · d2) · v), (2)

where v > 0 is the variance of the distance measurement from
3D LiDAR (given from the sensor specs), d is the horizontal
distance from the 3D LiDAR point to the center of the cell c,
and C > 0 is a parameter related to the maximum slope of
the excavating landscape. We obtain a maximum a posteriori
(MAP) estimate of the elevation of every cell at every update.
Fusion for mean and variance is conducted using the elevation
in the previous timestep tk, and the aggregation of incoming
3D LiDAR pointclouds between tk and tk+1. Such computed
MAP mean, x̂c

k+1, represents the topographic information
at time tk+1 and is employed for collision avoidance and
excavation path generation.

Empirically, we found that the performance of the proposed
landscape estimator does not get significantly affected by the
values of the tunable parameters, such as the size of the
cell, Qu, Qw, C, and the time window δt = tk+1 − tk,
as long as their values remain reasonable. It can be seen in
Fig. 4 (a), (b) that the proposed landscape estimator succeeds
in stably capturing the change of the ground shape, even
while (a) digging and (b) dumping where reliable 3D LiDAR
measurements are not available due to the bucket movement
and the falling dirt. Snapshots of landscape estimates taken
during an excavation task are shown in Fig. 4 (d). As the
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(b1) (b2) (c)
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Fig. 4: Real-time landscape estimation. Subfigures (a) and (b) depict the proposed landscape estimation module in operation during digging and dumping,
respectively. In both situations, even though reliable sensor measurements are not available due to the bucket motion and the falling dirt, the proposed estimator
successfully captures landscape changes in a stable manner. This is possible due to the kinematics-based pointcloud filtering (any point falling into one of the
boxes shown in (c) is rejected), and the Kalman-like MAP estimation method assuming a stochastic dynamics (1) of the landscape. As multiple swing motions
are made while excavation progresses, the 3D LiDAR measurements naturally reveal additional information about the surrounding landscape, as shown in
(d). Throughout this figure, the color of the grid cell represents the covariance of the estimated elevation; red and white represent small (high estimation
confidence) and big (low confidence) covariance, respectively. Grid cells with infinite covariance, i.e., never-observed cells, are not shown.

excavation task progresses, the 3D LiDAR measurements
reveal more area around the equipment.

VI. EXCAVATION MOTION GENERATION AND TRACKING

To successfully accomplish an excavation task, generated
motion has to satisfy both geometric constraints (e.g., collision
avoidance while not in excavation, or bucket pose constraint
while digging) and physical constraints (e.g., constraints on
hydraulic cylinder speed, pump flow rate, and power limit).
Since geometric constraints can be formulated in configuration
space, they can be imposed on a path without time informa-
tion, and offline computation of such path would suffice. On
the other hand, because physical constraints require real-time
state and input feedback and are defined on the entire state
space, the constraints should be enforced on a trajectory, and
the trajectory should be calculated online in real-time. To fulfill
all these constraints, similar to our previous work [15], we
propose a two-staged motion generation scheme composed of
path generation and path tracking motion generation.

A. Excavation Path Generation
The path generation functionality is mainly devoted to

satisfying the geometric constraints. In generating an exca-
vation path, we consider a number of geometric constraints as
follows. First, during digging,

• The swing angle should be fixed, i.e., the motion of the
arm part should be confined on the excavation plane, the
plane spanned by the workspace of the arm while the
swing angle is fixed (Fig. 5 (a)).

• To avoid over-excavation, the bucket should always stay
above the target landscape.

• To avoid damage to the joints, excavator parts other than
the bucket should not touch the ground.

And while not in digging,
• Each part should not collide with the ground.
• When transporting a bucket filled with dirt to the dumping

site, the bucket orientation has to be fixed not to spill the
dirt.

To effectively compute a path that completes an excavation
task while satisfying all the above geometric conditions, we
first divide a single digging task into five phases as illustrated
in Fig. 5 (b):
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Excavation Plane

Excavation Path

Target Landscape

Current Landscape

(b)

(a)

Phase 4

Phase 5

Phase 1

Phase 2Phase 3

Point of Attack

Fig. 5: (a) An example of the excavation path generated during the experiment.
The excavation plane is shown as a blue transparent box. It is defined as the
plane spanned by the workspace of the arm, while the swing angle being fixed
with the cabin pointing at the desired digging direction. (b) The digging path
consists of five phases. Phase 1: The bucket moves to the point of attack.
Phase 2: The bucket cuts through the ground. Phase 3: The bucket is lifted
above the ground. Phase 4: The dirt inside the bucket is conveyed to the
dumping position. Phase 5: Dumping occurs.

Phase 1: The bucket moves from the initial configuration to
the point of attack.

Phase 2: Digging occurs.
Phase 3: The bucket filled with dirt is raised above the

ground.
Phase 4: The excavator conveys the bucket to the dumping

position, while not spilling the dirt.
Phase 5: Dumping occurs.

To ensure path feasibility and continuity across phases, we
first compute the path for phase 2, i.e., the digging profile,
and then for the other phases.

For efficient and precise earth shaping, we establish two
different types of digging profiles: normal digging, and tip
grading. The normal digging profile is intended to scoop the
largest possible amount of soil every repetition while not
exceeding the bucket’s capacity, so that the number of digging-
dumping cycles is reduced. On the other hand, the tip grading
profile aims to precisely shape the ground as desired while not
penetrating through the target landscape. The normal digging
profile is first employed, and then the tip grading profile is used
after the current landscape approaches the target landscape
sufficiently close after some digging repetitions.

To establish the criterion on how to switch between the
two digging profiles, we first define three ground shapes as
lines on the excavation plane: the current landscape obtained
from real-time landscape estimation module, the prescribed
target landscape, and the tip grading threshold located above
the target landscape by a certain threshold, as shown in Fig. 5
(b). The excavator selects the tip grading profile if the current
ground shape lies between the target landscape and the tip

(1) Uphill

(2) Downhill

(3) Trenching

(4) Deep Digging

Landscape before Excavation

Target Landscape

Excavation Progress (Red → Blue)

Fig. 6: Normal digging profiles were generated in a simulation environment
with different target landscapes. Regardless of the current and the target
ground shapes, the proposed path generation module successfully generated
consecutive digging profiles without encountering infeasibilities.

grading threshold, and the normal profile otherwise. Note that
due to the piling-up dirt and micro-scale landslips, it is also
possible to switch back from tip grading to the normal profile.

The normal digging profile is generated with the following
procedure. We assume that the target landscape is achievable
given the given excavator hardware and its crawler position,
and it has no cavity. First, the excavator attempts to find the
point of attack for excavation. The point of attack is decided to
be an intersection of the current landscape and the tip grading
threshold with the farthest distance from the cabin, as shown in
Fig. 5 (b). In order to search for a feasible digging path while
dealing with the path-dependent nature of the swept volume,
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Clearance Angle

Fig. 7: An example of a tip grading profile. The bucket tip follows the desired
landscape, starting from its farthest reachable point on the target. The big red
arrow denotes the moving direction of the bucket. The cutting angle is kept
constant throughout the profile.

we make use of a tree search algorithm on the 3D grid whose
three axes consist of the lengths of boom, stick and bucket
cylinder lengths, respectively. Feasibility here refers to bucket
capacity, the cutting angle (the angle between the tip path and
the bucket), and whether the arm penetrates through the target
landscape. To reduce the number of searches, we employ a
depth-first search (DFS) algorithm on the 3D grid defined
by the lengths of the three hydraulic cylinders composing
the excavator arm. Among the tree nodes with same depth,
the priority is determined using a hardware-specific heuristic
that takes into account both the expected excavation volume
and the expected power consumption of the cylinders. By
using DFS, we are able to find a feasible path that scoops
satisfactory volume at a relatively low computational cost.
Fig. 6 shows how the normal digging profile is generated in
different landscapes. It can be seen from the figure that in
each digging-dumping cycle, the amount of soil removed by
the bucket is kept approximately constant, where the removed
volume is close to the bucket’s capacity.

The tip grading profile, on the other hand, is generated in
a manner that the bucket follows the target landscape. An
example of a tip grading profile is shown in Fig. 7. As shown
in the figure, starting from the farthest reachable point on the
target landscape, the bucket tip is pulled toward the cabin,
while maintaining a constant cutting angle.

In phases 1, 3, 4, and 5, we apply A* planner to generate a
path in a 4D grid whose four axes comprise the swing motion
and three cylinder lengths. The objective of the planner is to
reach the goal configuration while considering the excavator
kinematics and minimizing the aggregate flow in and out of
each cylinder. In phase 4, in order to prevent the excavator
from spilling the removed dirt, we impose an additional con-
straint where a configuration space having the open direction
of the bucket not heading upward is considered as an obstacle.

B. Path Tracking using Model Predictive Control

Since the generated excavation path lacks time information,
we perform time allocation before execution. We define the
traversal time of each path segment to be maximal but not
to exceed the reference expansion/contraction velocity of
each cylinder. Then, to enforce physical constraints on the
time-allocated trajectory, we employ model predictive control

(MPC) in the local motion planner. MPC solves a constrained
optimal control problem iteratively in a receding horizon
manner and has been widely adopted in various robotics and
construction applications [15], [19] since it enables to compute
state and input trajectories satisfying motion constraints in
real-time.

The local planner assumes the following discrete-time first-
order dynamical model:

qk+1 = fd(qk, uk), (3)

where q is the 4-dimensional configuration of the excavator
including the swing angle and the posture of the arm, and u is
the 4-dimensional control input that comprises the swing rate
and extension/retraction rate of the hydraulic cylinders. The
subscript k indicates that the corresponding variable is from
the time step tk, and fd is a function determining the next
state qk+1 from the current state and input.

The dynamical model is derived from the first-order kine-
matic relation q̇ = J(q)u where J(q) is the Jacobian matrix.
A better prediction model could be applied using a higher-
dimensional dynamical model that incorporates hydraulic pres-
sure dynamics and inertial effects. However, due to the high
uncertainty raised by oil temperature and hydraulic friction,
model identification becomes extremely challenging, and the
strong nonlinearity of the high-dimensional dynamics hin-
ders the real-time applicability of MPC. To overcome these
challenges, we opted for a relatively simple kinematics-based
dynamical model in MPC, leveraging a low-level controller
with sufficient tracking performance. The effectiveness of this
approach has been validated through experiments.

Physical constraints considered in MPC are 1) power limit,
2) cylinder displacement limit, and 3) pump flow rate limit,
and can be expressed in the following form at the time step
tk:

c(qk, uk, fp) ≥ 0, (4)

where fp is the measurement of hydraulic pressures inside the
cylinders and is used to express the power limit constraint. Due
to difficulty in accurately estimating the hydraulic pressure
dynamics, we choose to assume constant pressure during the
prediction horizon and instead take a fast update rate. Detailed
expressions for the considered physical constraints can be
found in [15].

Using (3) and (4), we formulate an MPC problem as
follows:

min
q(·),u(·)

J(q(·), u(·); qr(·))

s.t. qk+1 = fd(qk, uk), q0 = q(t)

c(qk, uk, fp) ≥ 0.

(5)

We take the cost function J be quadratic with respect to
the state error q − qr and input u; this is to track the
high-level reference trajectory while regulating inputs so that
excessively aggressive maneuvers are avoided. The computed
local trajectory is then transformed to push/retract force input
for the hydraulic cylinders by the low-level controller and
relayed to the excavator.

The formulated MPC problem is solved using a constrained
iterative linear quadratic regulator (iLQR) algorithm with the
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Intentional Swing Motion(a) (b)

(c)

Fig. 8: (a) Intentional swing motion of the excavator. It can be seen from (b)
that the proposed multi-view stereo method (blue region) not only provides
a larger FOV but also enhances the accuracy and precision of landscape
reconstruction, compared to the single-view counterpart (red region). (c) A
stitched image generated using the BA algorithm. This image is generated
using 140 single-view images and −30◦ ∼ 30◦ swing motion with the boom
being fixed.

augmented Lagrangian method [20]. We validate its real-time
applicability and constraint satisfaction in experiments. On
the onboard computer, our MPC was able to run consistently
at 10 Hz or faster, given the time horizon of 6 s, time
discretization and integration interval of 0.04 s. Furthermore,
the proposed MPC ensures to satisfy all the physical con-
straints as visualized in Fig. 10 (c). An ablation study for the
imposed physical constraints (baseline results in the figure)
also validates effectiveness of our MPC formulation.

VII. PRECISE LANDSCAPE INSPECTION USING
MULTI-VIEW STEREO

The proposed 3D LiDAR-based real-time landscape estima-
tion module captures terrain changes promptly and reliably.
However, it is not suitable for post-excavation inspection,
due to the following reasons. Firstly, the structural vibration
corrupts the relative pose information between the two 3D
LiDARs. The S2V alignment quality decays with respect to
time due to extreme vibration and impact during the digging
task. Secondly, the landscape estimation exhibits sensing in-
accuracy of up to decimeters due to the non-negligible grid
size. One might use smaller grid cells, but the inaccuracy
originating from the poor LiDAR alignment still remains
unresolved. Finally, the lack of 3D features on the unstructured
construction site and the sparsity of 3D LiDAR pointcloud
data makes pointcloud alignment hard, posing difficulty in
employing LiDAR mapping methods for inspection.

We therefore construct a separate module using a stereo
camera attached to the bottom of the boom for landscape
inspection. Cameras provide high-resolution information at a
relatively low cost, which leads to high-quality 3D recon-
struction. The proposed vision-based inspection module does
not require additional external apparatus and operates with
onboard sensors only, completing the process within seconds.
This inspection module shows a competent performance com-
pared to land surveying solutions in precision and accuracy.
Additionally, since the two cameras are rigidly connected to
each other by short distance, the stereo camera is more reliable

compared to 3D LiDARs in terms of robustness against severe
vibration and impact.

To ensure a sufficient amount of observation data and larger
horizontal coverage of the stereo camera, intentional swing
and boom motions are introduced during the inspection. Since
the camera is mounted under the boom facing downward, such
motions will allow the camera to view the terrain from multiple
viewpoints. Fig. 8 (a) illustrates excavator motions that result
in horizontal motion. Empirically, obtaining observations with
swing motions of tens of degrees without a boom motion is
sufficient to achieve sub-centimeter level precision.

We employ the Kanade-Lucas-Tomasi (KLT) algorithm for
feature tracking. The original KLT algorithm assumes that the
camera always observes the environment in a vertical direc-
tion, which is not our case. Thus, to achieve better performance
in feature tracking, we model patch deformation with an affine
pixel transformation and solve an optimization problem. A
constrained affine KLT-based approach to track features in the
target region is employed, where the initial guess is given from
the real-time estimated topography. Through correspondences
of feature points in sequential images, we reconstruct the 3D
points of features and estimate camera poses at each sequence.

Bundle adjustment (BA) is employed, which jointly op-
timizes all camera poses and 3D points using multiple im-
age measurements. Dense representation with millions of 3D
points for landscape inspection yields many pose-and-point
coupling terms, which may result in burdensome computation.
To that end, we propose a simple but effective two-step
optimization. In the first step, all camera poses and the reduced
number of sampled points are jointly optimized. In most cases,
we found that camera poses are accurately optimized with only
thousands of points. We sample several hundred features per
image with the highest Features from Accelerated Segment
Test (FAST) [21] scores. In the second step, by fixing the
optimized camera poses, point-only BA is executed to optimize
all 3D points. By doing this, we can avoid computationally de-
manding calculations of pose-point coupling terms and make
the proposed inspection module work within a few seconds.
Note that the difference in the overall accuracy between the
proposed two-step and full BA is negligible, but the two-step
method is significantly faster than the full BA. A qualitative
comparison of the two methods’ computation time in different
inspection scenarios are given in Table I.

For various terrain configurations in precision earthcutting
scenarios as shown in Fig. 9, the landscape inspection module
utilizing an onboard stereo camera achieves an accuracy level
of 1 cm, which outperforms the two baselines using 3D
LiDAR only or single-view stereo reconstruction as shown
in Table II. In the table, it can also be found that the shape of
the target terrain does not significantly affect accuracy. This
level of accuracy surpasses the precision achievable by skilled
human operators operating commonly used construction exca-
vators of general sizes (20 tons or larger).

VIII. EXPERIMENTAL VALIDATION

A. Experiment Setup
Now, we validate the proposed AES using a real hardware

in a cut slope task, in which we want the excavator to cut a
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(a) Smooth slope (b) Slope with a crater (c) Uneven slope (d) Flat ground

Fig. 9: Four scenarios to validate the proposed landscape inspection module. Each scenario represents a realistic construction site for excavators. We compare
the results of Trimble scanning Total Station ([11], a commercial land-surveying solution) and the proposed precise landscape inspection as shown in Table
II. For comparison, we calculated the reprojection error onto the top-down view of the scene after aligning the coordinates of the two methods.

TABLE I: Computation time comparison between a commercial solution (scanning Total Station) and our method in sloped and flat ground scenarios such
as Fig. 9 (a) and (d). The BA methods are capable of performing inspection within a larger FOV with less time consumption, and the proposed two-step
algorithm further enhances computation speed.

Scenario Method Area [m2] Computation time [s] Computation time per unit area [s/m2]

Upward slope
scanning Total Station 28 2542 90.8

Multi-view stereo — full BA 75 833 11.11
Multi-view stereo — two-step BA (ours) 75 48 0.64

Flat ground
scanning Total Station 75 3521 46.94

Multi-view stereo — full BA 101 978 9.68
Multi-view stereo — two-step BA (ours) 101 59 0.584

Note: Bold underlined numbers represent the fastest among the three methods, in terms of computation time per unit area.

TABLE II: Quantitative comparison of 3D reconstruction accuracy and precision for the four validation scenarios shown in Fig. 9. The measurements obtained
from Trimble scanning Total Station are used as the ground truth. The LiDAR-only method uses LiDAR pointclouds accumulated during the acquisition of
multiple stereo images; the single-view stereo method reconstructs a 3D pointcloud with only one pair of images; and the multi-view stereo method is the
proposed precise landscape inspection method.

(a) Smooth slope (b) Slope with a crater (c) Uneven slope (d) Flat ground

LiDAR only Median 2.7 1.4 0.8 3.0
StDev. 6.0 5.9 8.8 4.2

Single-view stereo Median 1.5 1.5 2.8 9.1
StDev. 13.4 4.2 3.7 4.0

Multi-view stereo (ours) Median 0.4 0.6 0.8 0.5
StDev. 4.7 2.8 7.0 2.7

Note: Unit is [cm]. Bold underlined numbers represent the best among the three methods. StDev. = Standard deviation.

45◦ upward slope that is 3.5 m wide and 1.5 m high. Such
an upward slope cutting task is one of the most commonly
conducted excavation tasks in the first stage of construction.
Our experiment site consists of up to 10 cm-sized gravel and
soil.

The hardware is a 30-ton excavator, Hyundai HX300AL.
For communication between onboard sensors and computer,
Ethernet and CAN communication networks are employed.
The excavator’s bucket can scoop up to 1 m3 soil in a single
excavation. On the bucket tip are steel teeth of length 10
cm attached in order to facilitate earthcutting. The hydraulic
actuators are controlled by spool valves. The positions of the
spools determine the flow rate to each actuator. The spools
are driven by the pilot hydraulic pressure, which is controlled
by the electronic signal from the onboard computer through
electro-hydraulic pressure reducing (EPPR) valves at 100 Hz.
The 3D rotating LiDAR sensors used in the experiment are
capable of measuring distance at 3-cm-level accuracy. The
IMUs provide the posture of the arm part with accuracy of
0.1◦, and the rotary encoder measures the swing angle at 2◦

accuracy.
Since the amount of soil to be excavated exceeds the

capacity of the bucket, the excavator needs to repeat dig
cycles at different base positions. To attain the desired width

of the slope, we perform excavation at three different base
locations by moving the crawler in the horizontal direction to
the landscape.

At every base location, excavation is performed until the
bucket tip reaches the tip grading threshold where we set the
tolerance as 50 cm. Due to soil movement, tip grading some-
times results in an error in height more than the predefined
tolerance. In that case, the excavator performs excavation and
tip grading over again. Such a cycle repeats until the height
error is uniformly smaller than the tolerance in the ROI.

B. Result and Discussion

Experimental results in Fig. 10 (a)-(b) show the excavation
process including snapshots of estimated landscape (a1)-(a4),
earthcutting result (b1), and the landscape inspection result
(b2).

A qualitative investigation on the 35 m2 region around
the excavated landscape was carried out using the proposed
inspection method, as shown in Fig. 10 (d). For precise
landscape inspection, considering the shape of the ROI, we
fixed the boom angle and adopted a swing-only motion of
60◦. The mean and standard deviation of the absolute value
of the elevation error were calculated as 7.4 cm and 5.3 cm,
respectively, where the elevation error was measured within
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Fig. 10: Experimental result. (a1)-(a4) show landscape change as excavation proceeds. Excavation starts at the state in (a1), and the target landscape is
established through an iterative digging cycle. (b1) Landscape after excavation terminates. (b2) Precise landscape inspection result after excavation. (c) Power
constraint, one of the physical constraints, is shown to be satisfied through the proposed MPC throughout the execution time, while the constraint-free baseline
algorithm fails to adhere to the constraint. (d) Comparison between the desired landscape and the result of precise landscape inspection for the 3.5 m × 3
m ROI. Excavation is accomplished within 10 cm accuracy.

the rectangular ROI of 3.5 m in width and 3 m in depth.
The result shown in Fig. 10 (b2), (d) is sufficiently precise
considering the excavator’s size and the bucket type; it is at a
similar level to that by professional operators.

Thanks to the MPC-based motion generation step which
prevents violation of the physical constraints (Fig. 10 (c)),
stable excavation can be accomplished without wobbling the
bucket tip position. We found that, in the early stages of the
earthcutting task, where there is a substantial amount of soil
to be excavated and significant earth-bucket interaction forces
are present, the bucket tip exhibits relatively large tracking
error of up to 50 cm. However, as the operation progresses
and the amount of soil to be excavated decreases, along with
reduction in the load on the excavator, we observed that the
excavator gradually achieves better precision in tracking the
planned trajectory, resulting in the aforementioned centimeter-
level earthcutting quality. The tip position error, however,
largely relies on the performance of the low-level controller
such as [22], [23]. This is out of the scope of this paper, but we
believe excavation error can be further improved by enhancing
the controller.

C. Computation Time Analysis

Finally, we conduct computation time analysis. All the
proposed software are implemented and run on an onboard
computer with a quad-core CPU at base clock 1.8 GHz and
8 GB RAM. First, the landscape estimation module takes
measurements of the two 3D LiDARs running at 10 Hz and
generates a 2.5D elevation map with a grid size of 40 cm × 40
cm in 5 Hz. Considering the rate of landscape change, this up-
date rate is sufficiently fast to reflect changes in real-time. For
precise landscape inspection, it takes 60 s for photo-shooting

(i.e., intentional swing motion), and the algorithm itself takes
25.8 s (or 0.74 s/m2). Compared with the widely-applied
Trimble scanning Total Station [11] which spends 1192 s (or
34.2 s/m2), the proposed method consumes significantly less
time while providing competent performance. A digging path
is computed in 0.3 s in most cases, and the path-tracking
MPC generating a local trajectory runs faster than 0.08 s.
Since the computation time of the digging profile generation
is faster than the float time between two sequences of soil
dumping and returning to the excavation plane with swing
motion, ceaseless excavation can be performed. Furthermore,
the physical constraints can be satisfied, thanks to the fast
running rate of MPC that enables real-time response to the
change of cylinder pressure and the excavator configuration.

IX. CONCLUSION

A. Summary

This research proposed an integrated AES that combines
real-time landscape estimation, excavation path generation,
path tracking, and precise landscape inspection. In detail, we
suggested a sensor arrangement to ensure sufficient FOV even
during excavation regardless of the target landscape, a motion
planning technique considering both geometric and physical
constraints, and real-time landscape estimation and precise
landscape inspection methods that rely on onboard sensors
only.

These proposed techniques were validated on a real 30-
ton hydraulic excavator. During experiments, the proposed
methodology successfully executed an earthcutting task on a
45◦ upward slope, achieving accuracy within 10 cm through
repetitive autonomous excavation tasks. The newly suggested
post-excavation inspection technique completed its task within
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one minute, showing an accuracy level of less than one cen-
timeter. With the tens of times faster speed than commercial
solutions in terms of computation time per inspection area,
our method achieved a similar level of inspection accuracy.

B. Discussion and Future Work

While we successfully demonstrated completing a single
excavation task autonomously using the proposed AES, there
still remains the need for additional research for deployment
of an AES in real-world construction sites.

In terms of perception, using cameras for landscape inspec-
tion poses drawbacks such as the inability to work during dark-
ness and susceptibility to weather conditions. Improvement in
this aspect is needed, including employing backup sensors.
Regarding excavation motion generation, our method relies on
the local planner to track the global planning generated when
the digging cycle begins, but the excavator may get stuck in
the presence of unperceived rigid undiggable obstacles in the
soil, such as bedrock. Improvements to the local planner can be
made to address this issue; for instance, creating and utilizing
a 3D map of underground soil ease of excavation based on
hydraulic pressure could be a viable solution.

To deploy AES in large-scale construction sites, the move-
ment of the excavator base should be taken into account. This
includes (but not limited to) the higher-level task planning on
where to begin digging such as [24], cooperation with other
excavators and heavy equipment such as dump trucks, and
developing additional modules to distinguish drivable and non-
drivable areas using onboard sensors.
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