
2020 20th International Conference on Control, Automation and Systems (ICCAS 2020)
Oct. 13∼16, 2020; BEXCO, Busan, Korea

Provably Safe Real-Time Receding Horizon
Trajectory Planning for Linear Time-Invariant Systems

Inkyu Jang1, Dongjae Lee1, and H. Jin Kim1∗

1Department of Mechanical and Aerospace Engineering, Seoul National University,
Seoul, 08826, Korea ({leplusbon, ehdwo713, hjinkim}@snu.ac.kr) ∗ Corresponding author

Abstract: Safe operation in spaces under uncertainty is crucial for robotic systems, especially for mobile robots. As-
sorted unknown quantities such as external force or estimation error can be considered disturbances. However, many
robust trajectory planning algorithms that take effects of disturbances into account often accompany heavy computational
load or are excessive conservatism. In this paper, we present a provably safe real-time receding horizon trajectory plan-
ning algorithm for linear time-invariant (LTI) systems. The proposed method ensures the same level of safety that other
reachability-based robust planning algorithms provide, while not overestimating the reachable set. We verify the pro-
posed framework through simulation with a six-degree-of-freedom system, in which the proposed method generates safe
trajectories faster than 100 Hz.

Keywords: Robust Motion Planning, Trajectory Planning, Safe Flight Corridor, Reachability Analysis

1. INTRODUCTION

Safe operation of robots even in the presence of exter-
nal disturbance and noise has emerged as a big concern
in the field of robotics, as they are now serving for var-
ious missions in more diverse environments. Considera-
tion of disturbances is particularly important for mobile
robots in obstacle-dense environments, as unknown dis-
turbances including external forces, sensor noise, and/or
model error may cause collision or loss of stability.

Related to this issue, in the realm of motion plan-
ning, several studies have been conducted to guarantee
robust collision avoidance against unknown external dis-
turbance. In [1] and [2], Hamilton-Jacobi (HJ) reacha-
bility analysis was employed to guarantee safety for rel-
atively simple dynamic systems. These HJ reachability
analysis frameworks involve solving HJ partial differ-
ential equations (PDEs) and may take heavy computa-
tion. [3] circumvents this difficulty by finding an ellip-
soid that encompasses the forward reachable set (FRS)
and while using it as the safety bound. Several robust
model predictive control (MPC) approaches are also used
to secure safety against disturbances. Approaches deploy-
ing min-max MPC [4], which was first suggested in [5],
can guarantee safety for all unknown but bounded distur-
bances in a fixed or receding horizon manner. Another
approach, tube-based model predictive control (TMPC)
[6, 7], aims to find the forward invariant sets which the
system is guaranteed to stay within. These works are suc-
cessful in guaranteeing safety during operation, but of-
ten require long computation time. Approximation tech-
niques can facilitate real-time planning. However, as a
trade-off, they might induce degradation of theoretic ro-
bustness or overly conservative safety constraints.

This work was supported by Institute of Information Communications
Technology Planning Evaluation(IITP) grant funded by the Korea gov-
ernment(MSIT) (No. 2019-0-00399, Development of A.I. based recog-
nition, judgement and control solution for autonomous vehicle corre-
sponding to atypical driving environment)

In this work, we present a safety-guaranteed real-
time receding horizon planning algorithm for linear time-
invariant (LTI) systems in environments populated with
stationary and known obstacle. The contribution of this
paper is twofold. First, to reduce the computational bur-
den of solving for the reachable sets, a collision check-
ing method based on safe flight corridor (SFC) [8, 9]
is proposed, instead of solving forward reachable set at
every sampling time. This method guarantees the same
level of safety and robustness as other reachability-based
approaches. Second, a real-time robust receding horizon
planning algorithm using the aforementioned collision
prediction method is proposed. Through simulation, we
show that the proposed planning algorithm runs in real-
time, over 100 Hz in case of a six-degree-of-freedom sys-
tem.

This paper is structured as follows. In section 2., we
state the planning problem and theoretical methodologies
to solve it. In subsection 2.1, a recursive formula to find
the FRS is suggested; in subsection 2.2, a fast method
based on linear programming (LP) is proposed to check
for possible collision between an affine wall and the FRS;
and subsection 2.3discusses the overall receding horizon
planning algorithm. A Monte Carlo simulation to verify
the proposed method is presented in section 3..

2. PRELIMINARIES & PROBLEM
DESCRIPTION

In the following subsections, we consider a discrete-
time LTI system under disturbance in the following form:

xt+1 = Axt +But +Dwt, (1)

where xt ∈ Rnx , ut ∈ Rnu , and wt ∈ W ⊆ Rnw repre-
sent the state vector, input, and external disturbance, re-
spectively, at time t, and A, B, D are matrices of appro-
priate sizes. The set W represents the disturbance bound
and is assumed to be convex throughout this paper. How-
ever, W does not need to be full-dimensional in Rnw .

With a feasible reference trajectory xreft and open-loop
reference input ureft such that xreft+1 = Axreft + Bureft
and a reference-tracking linear controller ut = ureft −
K
(
xt − xreft

)
, we obtain the following closed-loop error

dynamics of the system:

et+1 = (A−BK) et +Dwt = Acet +Dwt, (2)

where et = xt − xreft and K is the gain matrix. The
closed-loop dynamics is assumed to be stable.

2.1 Calculation of the FRS
The FRS of the closed-loop system at time t+ k given

information at time t, Xt+k|t, is defined to be the set of
all reachable xt+k’s to which a sequence of disturbance
wτ ∈ W , τ ∈ {t, t + 1, · · · , t + k − 1} can drive the
system, starting from the initial state xt ∈ Xt|t. Mathe-
matically, it is defined as

Xt+k|t =xt+k
∣∣∣∣∣ ∀τ ∈ {t, · · · , t+ k − 1},
xτ+1 = xrefτ+1 +Ac(xτ − xrefτ) +Dwτ ,

xt ∈ Xt|t, wτ ∈W

 .
(3)

Consider two reachable sets Xt+1|t0 and Xt|t0 , where
t0 and t ≥ t0 are two arbitrary epochs. To obtain Xt+1|t0
givenXt|t0 , the only input we need to consider iswt, thus
it is straightforward to find out that

Xt+1|t0 = xreft+1 +Ac
(
Xt|t0 − x

ref
t

)
+DW, (4)

where we allowed some abuse of notation here, i.e.,
PQ = {Pq | q ∈ Q} and Q ± v = {q ± v | q ∈ Q} for
a matrix P , a vector v, and a set of vectors Q. The plus
sign between sets denotes the Minkowski sum. Using Eq.
(4) recursively, we can calculate the reachale set using the
following.

Xt+k|t = xreft+k +Ac
(
Xt+k−1|t − xreft+k−1

)
+DW

= xreft+k +Ac(Ac(Xt+k−2|t − xreft+k−2)
+DW) +DW

= · · ·
= xreft+k +Akc (Xt|t − xreft)

+Ak−1c DW +Ak−2c DW

+ · · ·+AcDW +DW

(5)

Note that the multiplications of Eq. (5) are not distributive
over Minkowski addition, i.e., for two matrices A1 and
A2, A1W +A2W 6= (A1 +A2)W in general. Thus, the
terms involving DW cannot be merged.

Fig. 1 shows an exemplary FRS of the following two-
degree-of-freedom system under disturbance:

xt+1 =

[
1.0 0.1
−0.2 0.8

]
xt + wt, |wt| � 0.1, (6)

where a � b if all components of a is less than or equal
to b for vectors (of the same size) a and b. As it can be
seen in Fig. 1, the number of vertices of the FRS grows
very rapidly.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Fig. 1 The FRS of the given system Eq. (6) over 500
time steps starting fromX0|0 = {0}. The FRS was calcu-
lated directly using Eq. (4) recursively and the quickhull
algorithm. [10] At time step 250, it has more than 1000
vertices.

2.2 Safety Guarantee using FRS and SFC
Using Eq. (5) to calculate the FRS is, however, not

an efficient way of detecting potential collisions in prac-
tice, since the formula requires many Minkowski addi-
tions which are in general computationally burdensome.
In order to reduce this computational load, instead of cal-
culating the actual reachable set, we plan a trajectory such
that the FRS at each epoch stays within an SFC, which
is a convex obstacle-free region. We consider polytopic
SFC, which can be obtained in real-time using the algo-
rithm proposed in [9], i.e.,

SFCt =
{
x | c>x ≤ d, ∀(c, d) ∈ W(t)

}
, (7)

where W(t) selects appropriate halfspaces (c, d) that
compose the SFC. To ensure safety for a time window
τ ∈ {t, t+ 1, · · · , t+Nc}, the FRS Xτ |t should be con-
tained within the SFC, i.e.,

d ≥ sup.
x∈Xt+k|t

c>x

= c>xreft+k + sup.
x∈Xt|t

c>Akc (x− xreft)

+

k−1∑
j=0

sup.
w∈W

c>AjcDw,

(8)

for all k ∈ {0, 1, · · · , Nc} and (c, d) ∈ W(t+k). Eq. (8)
consists of k LP problems on domain W and one LP on
Xt|t. If W is convex, LPs can be readily solved in gen-
eral. We assume that the disturbance boundW is given as
a polytope. For fast computation, vertices of W and their
connectivity are obtained and stored in the initialization
process. Then, the LP problems of Eq. (8) can be solved
by jumping between neighboring vertices of W . Matri-
ces D, AcD, · · · , ANc−1c D can also be pre-evaluated to
reduce running time.

Algorithm 1 Planner initialization (offline)
Input: Obstacle points(O)
Output: Initial trajectory (pst), SFCt
1: ps ← LinearInterpolate (GeneratePath(O))
2: Find st such that

∥∥pst+1 − pst
∥∥
Pv

= vref .
3: for i = 1 to Ns do
4: SFCt ← SFC(pi−1, pi) ∀t, s.t. i− 1 < st ≤ i
5: end for
6: W(t)←Walls(SFCt)
7: return pst , SFCt

For c ∈ Rnx and k ∈ {0, 1, · · · , N}, let δc,k and µc,t,k
be

δc,k =

k−1∑
j=0

sup.
w∈W

c>AjcDw (k 6= 0)

0 (k = 0),

(9)

and

µc,t,k = sup.
x∈Xt|t

c>Akc (x− xreft). (10)

Then, the condition in Eq. (8) can be rewritten as

c>xreft+k ≤ d− δc,k − µc,t,k. (11)

The terms δc,k and µc,t,k, which are usually greater
than zero, can be interpreted as degrees of conservatism
needed for xreft+k to rule out any possibility of sticking out
of the halfspace (c, d) due to external disturbance and es-
timation uncertainty, respectively.

2.3 Receding Horizon Trajectory Planning
In this subsection we delineate the overall structure of

the receding horizon planning algorithm. The overall tra-
jectory algorithm consists of two parts: global initial tra-
jectory and SFC generation, and receding horizon refer-
ence trajectory update. The former step is executed once
offline, while the latter one repeatedly runs online. The
overall structure of the proposed algorithm runs as fol-
lows.

2.3.1 Global Initial Trajectory and SFC Generation
The initial trajectory and SFC are generated in the fol-

lowing manner. First, we obtain an initial path ps ∈ Rnx ,
s ∈ {0, 1, · · · , Ns}, which is an ordered set of via points.
The line segment connecting two neighboring via points
should be collision-free. For each of these line segments,
a polytopic SFC containing the line segment is built. We
denote the SFC containing p and q as SFC(p, q).

Next, the time allocation process is needed to supply
the initial path with temporal information, thereby ensur-
ing that the resulting reference trajectory is tractable. To
assign time information, we start by linearly interpolating
between neighboring via points, i.e., ps now runs for con-
tinuous s ∈ [0, Ns] ⊆ R. We will require the reference
trajectory to run at a reference speed vref > 0, where
speed vτ is calculated using

vτ = ‖xτ+1 − xτ‖Pv

=

√
(xτ+1 − xτ)> Pv (xτ+1 − xτ),

(12)

where Pv is a constant positive semidefinite matrix that
serves as weights for the state components in evaluat-
ing the speed. For that, the monotonically increasing se-
quence sτ ∈ R is defined for τ ≥ 0 to satisfy∥∥∥prefsτ+1

− prefsτ
∥∥∥
Pv

= vref , (13)

where psτ is the global initial trajectory that will be used
in the trajectory optimization process. The SFC corre-
sponding to epoch τ is given based on the time allo-
cation results, i.e., SFCτ = SFC(ps, ps+1) where s ∈
{0, 1, · · · , Ns} and s < sτ ≤ s+ 1.

The initialization step is summarized in Algorithm 1.
Lines 1 and 2 perform time allocation to the initial path,
lines 3 through 6 generate and assign the SFC to each
time step.

2.3.2 Receding Horizon Trajectory Optimization
In this step, we consider the running situation at time

t, where a measurement or estimation of the state, x̂t ∈
Xt|t, is given. Using the global trajectory psτ obtained
in the previous step, the reference trajectory is found by
solving the following optimization problem.

Problem 1 (Trajectory update). Find the reference input
urefτ−1 and trajectory xrefτ for τ ∈ {t+1, · · · , t+N} that
optimizes

min.
1

2

N∑
j=0

(xreft+j − pst+j)>Pj(xreft+j − pst+j)

+
1

2

N∑
j=0

(ureft+j)
>Qj u

ref
t+j

s.t. xreft = x̂t,

ureft = ut,

(ureft+k−1, x
ref
t+k) ∈ L,

xreft+k = Axreft+k−1 +Bureft+k−1,

c>xreft+kc ≤ d− δc,kc − µc,t,kc ,
∀(c, d) ∈ W(t+ kc),

∀k ∈ {1, 2, · · · , N},∀kc ∈ {1, 2, · · · , Nc}.

(14)

The matrices Pj and Qj are symmetric positive
semidefinite, and L is the set of practicable control input
and state. If L, W , and Xt|t are all convex sets, Prob-
lem 1 is a convex quadratic programming (QP) problem
and can be solved using the following process. Possible
collisions are checked for τ ∈ {t, t + 1, · · · , t + Nc},
where Nc ≤ N defines a time interval in which safety is
guaranteed. Unless infeasibility occurs, safety is guaran-
teed throughout the mission ifNc is smaller than the time
step of the receding horizon planning.
• First, solve the QP without the safety constraint
c>xref ≤ d− δ − µ.
• For k ≤ Nc ≤ N , check if xreft+k is closer than a certain
bound r to each wall of SFCt+k. If so, evaluate δ and µ
to check for possible collision.
• Add the wall constraint if collision is predicted and up-
date the QP solution.

Fig. 2 An example for the trajectory update algorithm. Initially, via points and SFC are created. The obstacle regions are
denoted as O. (left) The optimization in Problem 1 is solved without the SFC constraints to obtain a smooth trajectory.
The colors of the circles represent to which SFC they belong. The minimum distance between each SFC and the FRS is
checked. The last blue FRS at epoch t+ k intrudes into unsafe region. (mid) With safety constraint at t+ k, the trajectory
is replanned. (right) This process repeats until all reachable sets satisfy the safety constraints. The full reachable sets are
not evaluated during the planning algorithm but are depicted here for efficient explanation.

As described above, evaluation of the conservatism mea-
sure δ, which involves solving a number of LP problems
and may consume some computation time, is suspended
unless the system gets close to the wall. In most cases
where the system is far enough from obstacles, the tra-
jectory planning terminates without any update.

Fig. 2 illustrates the online trajectory update step.

3. SIMULATION RESULTS
To validate the aforementioned framework, we sim-

ulate using a jerk-controlled multirotor system in n-
dimensional space, which is a 3n-degree-of-freedom LTI
system. The time-discretized system is governed by the
following equations:

rt+1 = rt + vtδt+
1

2
atδt

2 +
1

6
jtδt

3 + wtδt,

vt+1 = vt + atδt+
1

2
jtδt

2,

at+1 = at + jtδt,

(15)

where δt > 0 is the length of the time step, rt, vt, at, wt,
jt ∈ Rn and xt = [r>t , v

>
t , a

>
t]>, ut = jt. The dis-

turbance wt ∈ W represents unpredictable but bounded
external wind, where the bound W is described as

W = {w = [w1, · · ·wn]> | |wi| ≤ wmax}. (16)

The system is equipped with a linear controller that en-
sures convergence to the reference, i.e.,

jt = jreft −K
(
xt − xreft

)
, (17)

where

K =
[
kr1n kv1n ka1n

]
(18)

is the gain matrix with positive gains (kr, kv, ka), and 1n
is the identity matrix of size n × n. The control signal
is assumed to be generated without any time delay. The
weighting matrices Pk and Qk of Problem 1 are consid-
ered constant and given as

Pk = blkdiag(wr1n, wv1n, wa1n),

Qk = wj1n.
(19)

We assumed accurate estimation of the full state, i.e.,
Xt|t = {x̂t} = {xt} and thus µ = 0. The obstacles are

Table 1 Simulation parameters

Parameter Value
Dimension (n) 2

Degrees of freedom 6
Length of the 100time window (N)

Length of the collision 40checking time window (Nc)
Number of via points (Ns) 5

Time step (δt) 0.01 s

Control gains (K) kr = 400,
kv = 120, ka = 10

Control limits (L) |a| � 10 m/s2

Cost weights wr = 1000, wv = 0,
wa = 0, wj = 1

Disturbance bound (W) |w| � 0.7 m/s
Reference velocity (vref) 0.9 m/s

given as a set of stationary points in n-dimensional space.
The actual values of the parameters used in the simulation
are summarized in Table 1.

With the same setting, 100 Monte Carlo simulation ex-
periments were conducted. The results are depicted in
Fig. 3. To emulate adversarial disturbance, the wind is
assumed to be heading in random directions with maxi-
mal speed. It is clearly shown that the simulated trajec-
tories never intrude into the unsafe region. The algorithm
was implemented using Python and NumPy of versions
3.7 and 1.18.4, and OSQP [11] version 0.6.0 was used to
solve QP. It requires 0.3 seconds to initialize (SFC gen-
eration), and runs at a frequency of 100-200 Hz depend-
ing on whether replanning is needed, on a desktop com-
puter equipped with 16 GB RAM and a hexa core AMD
RyzenTM 5 1600 Processor whose base clock runs at 3.2
GHz.

4. CONCLUSION
This paper presents a real-time receding horizon tra-

jectory planning algorithm for LTI systems, while guar-
anteeing safety against any possible sequence of bounded
disturbance. This is done by constructing SFCs through-

− 1.5 − 1.0 − 0.5 0.0 0.5 1.0 1.5 2.0 2.5

− 0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x [m]

 y [m]

Start

Goal

SFC
Sampled Trajectory
Initial Trajectory

Fig. 3 Monte Carlo simulation. 100 trajectories are sam-
pled and plotted. The environment is generated randomly,
five via points are manually created. SFCs are denoted as
blue regions.

out the environment, in which a line segment connect-
ing neighboring via points lies. To avoid possible colli-
sions, it is checked within the time window whether the
FRS of the system is always located within the borders of
the SFC, using linear programming at a fast computation
speed. In a simulation environment where a six-degree-
of-freedom LTI system runs in an obstacle-dense environ-
ment, the trajectory updates were computed in real-time
at 100 Hz or faster.

One possible vulnerability of the proposed framework
is that the reachability-based collision check is some-
times overly conservative and may result in infeasibili-
ties. This issue is common in many approaches that make
use of reachability analysis, because they try to find tra-
jectories that remain collision-free under adversarial dis-
turbance which always drives the system towards colli-
sion. This can be resolved by relaxing hard inequality
constraints (of Problem 1) or actively adjusting control
gains to shape the reachable set to fit within the safe
flight corridor. We expect to address this problem in fu-
ture works.

REFERENCES
[1] Ian M Mitchell, Alexandre M Bayen, and Claire J

Tomlin. “A time-dependent Hamilton-Jacobi for-
mulation of reachable sets for continuous dynamic
games”. In: IEEE Transactions on automatic con-
trol 50.7 (2005), pp. 947–957.

[2] Sylvia L Herbert et al. “FaSTrack: A modular
framework for fast and guaranteed safe motion
planning”. In: 2017 IEEE 56th Annual Confer-
ence on Decision and Control (CDC). IEEE. 2017,
pp. 1517–1522.

[3] Hoseong Seo et al. “Robust trajectory planning
for a multirotor against disturbance based on

hamilton-jacobi reachability analysis”. In: 2019
IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). IEEE. 2019,
pp. 3150–3157.

[4] Mario E Villanueva et al. “Robust MPC via min–
max differential inequalities”. In: Automatica 77
(2017), pp. 311–321.

[5] Pierre OM Scokaert and David Q Mayne. “Min-
max feedback model predictive control for con-
strained linear systems”. In: IEEE Transactions on
Automatic control 43.8 (1998), pp. 1136–1142.

[6] Gowtham Garimella et al. “Robust Obstacle
Avoidance using Tube NMPC.” In: Robotics: Sci-
ence and Systems. 2018.

[7] Anirudha Majumdar and Russ Tedrake. “Funnel li-
braries for real-time robust feedback motion plan-
ning”. In: The International Journal of Robotics
Research 36.8 (2017), pp. 947–982.

[8] Robin Deits and Russ Tedrake. “Computing large
convex regions of obstacle-free space through
semidefinite programming”. In: Algorithmic foun-
dations of robotics XI (2015), pp. 109–124.

[9] S. Liu et al. “Planning Dynamically Feasible
Trajectories for Quadrotors Using Safe Flight
Corridors in 3-D Complex Environments”. In:
IEEE Robotics and Automation Letters 2.3 (2017),
pp. 1688–1695.

[10] C. Bradford Barber, David P. Dobkin, and Hannu
Huhdanpaa. “The quickhull algorithm for convex
hulls”. In: ACM Transactions on Mathematical
Software (TOMS) 22.4 (1996), pp. 469–483.

[11] B. Stellato et al. “OSQP: an operator splitting
solver for quadratic programs”. In: Mathematical
Programming Computation (2020).

