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Abstract— In this paper, an autonomous aerial manipulation
task of pulling a plug out of an electric socket is conducted,
where maintaining the stability and robustness is challenging
due to sudden disappearance of a large interaction force. The
abrupt change in the dynamical model before and after the
separation of the plug can cause destabilization or mission
failure. To accomplish aerial plug-pulling, we employ the
concept of hybrid automata to divide the task into three
operative modes, i.e, wire-pulling, stabilizing, and free-flight.
Also, a strategy for trajectory generation and a design of
disturbance-observer-based controllers for each operative mode
are presented. Furthermore, the theory of hybrid automata is
used to prove the stability and robustness during the mode
transition. We validate the proposed trajectory generation and
control method by an actual wire-pulling experiment with a
multirotor-based aerial manipulator.

I. INTRODUCTION

Aerial manipulation has been a growing research topic
which aims to utilize the maneuverability of an aerial vehicle
and the versatility of a robotic manipulator. Different from
physically non-interacting passive tasks such as surveillance
and remote sensing, an aerial manipulator can execute active
tasks involving physical interaction such as grasping [1], [2],
valve turning [3], drawer opening [4], contact inspection [5],
transportation [6], [7], and door opening [8].

Despite various demonstrations of aerial manipulation
tasks involving contact with environments, they usually
involved a relatively low level of changes in the dynamic
characteristics, and they rarely dealt with the transition
during the physical interaction explicitly. In fact, there is a
lack of research on the stability of aerial manipulation before
and after the physical interaction. When a mode switch
entails a significant change in the system response, neglecting
it can lead to destabilization. Therefore, it is necessary to
systematically analyze dynamical modes and design a robust
controller to more realistically embrace the whole operation.

As an example of aerial manipulation involving a drastic
change in dynamics, this paper deals with the problem of
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Fig. 1: An aerial manipulator, a multirotor equipped with a 2-DOF
robotic arm, is pulling a plug from a socket. The plug is connected
to a wire grabbed by the end effector of the aerial manipulator.

pulling a plug from a socket using a multirotor equipped
with a two degree-of-freedom (DOF) robotic arm. In this
task, the large force exerted on the end-effector suddenly
disappears after the plug is separated from the socket. For
formal analysis of the stability, we first formulate hybrid
automata [9] which enclose all the dynamic models and the
operative modes that have their own control laws different
from another. Then, we design disturbance-observer (DOB)-
based controllers [10] for the respective operative modes and
prove the stability and robustness of the formulated hybrid
automata [11].

A. Related Works

There have been several works which explain aerial vehi-
cles using the concept of hybrid automata. In [12], [13], [14],
the contact task using an aerial vehicle is divided into two
operative modes, i.e. docking and free-flight, and each mode
are controlled by a different controller from one another.
However, these works did not conduct an analysis on stability
and robustness and the transition between those modes was
not explicitly discussed.

Some studies addressed the stability and robustness of
an aerial vehicle involved in the physical interaction using
the hybrid automata theory. In [15], the stability of path-
following control considering mode changes was investigated
for a robust contact of a ducted-fan aerial vehicle on a
vertical surface. In [16], the process of a multirotor landing
on the slope was divided into several modes and the stability
and robustness was proved in a similar way to [15]. However,
in such settings, the effect of dynamic change can be reduced
by slowly approaching the wall or landing site. Thus, there
is no guarantee that such control methods can maintain the
stability and robustness of the aerial manipulation involving
an abrupt change such as plug-pulling.



B. Contributions

To the best of the authors’ knowledge, this is the first
attempt to conduct a plug-pulling task using an aerial ma-
nipulator, which involves a significant mode change, and
present a thorough analysis on the stability and robustness
of the aerial manipulator using the hybrid automata theory.
We propose a trajectory generation strategy and DOB control
structure for each operative mode. Especially, for the situa-
tion of pulling the wire, we derive a dynamical model of the
aerial manipulator constrained to the wire and the socket. In
addition, we construct a DOB structure corresponding to the
model of the plug-pulling aerial manipulator and prove the
stability and robustness of the proposed controller.

C. Outline

In Section II, we briefly explain the concept of hybrid
automata, describe notions utilized throughout the paper and
introduce the aerial plug-pulling scenario. Section III formu-
lates hybrid automata for the aerial manipulator conducting
the plug task, and the trajectory generation and controller
design is described in Section IV. Section V shows the
stability and robustness analysis, and Section VI presents
the experimental setup and results.

II. PROBLEM SETUP

A. Preliminary: Hybrid Automata

The following elements define hybrid automata [9] with
the state variable x ∈ Rnx and the control input ux ∈ Rmx .
• Set of operative modes, M, contains names of the

control modes. With respect to M, we let t0,µ and td,µ
denote the time when the mode µ begins and the desired
time to terminate the mode µ, respectively.

• Domain mapping, D : M ⇒ Rnx × Rmx , means
the possible region where x and ux can evolve while
maintaining a specific mode µ. It is expressed as
D(µ) = Dx(µ)×Dux(µ).

• Flow map, f :M×Rnx×Rmx → Rnx/2, describes the
dynamics in each operative mode µ.

• Set of edges, E ⊂M×M, means all possible pairs of
operative mode changes (µ1, µ2).

• Guard mapping, G : E ⇒ Rnx × Rmx , describes the
conditions where the transition from µ1 to µ2 occurs.
It is represented as G({µ1, µ2}).

• Reset Map, R : E × Rnx × Rmx → Rnx , means
the jump of the state variable x. It is expressed as
R({µ1, µ2}, (x, ux)).

B. Notations

In this work, we use 0ij , Ii and e3 to denote the i×j zero
matrix, the i×i identity matrix and [0 0 1]>. Also, we define
ai, [a], dim(a), Ai,j , Ai:j,k:l and Bσ(a) as the i-th element of
a column vector a, the so(3) operator representing the cross
product [a]b = a×b, the dimension of a, the (i, j)-th element
a matrix A, the block matrix of A containing from (i, k)-th
to (j, l)-th elements and the set {c ∈ Rdim(a) | ‖c − a‖ ≤
σ} where σ is a constant positive number. The Kronecker
product is expressed as ⊗.

Fig. 2: The picture depicting an aerial manipulator perching on the
wall connected by a spherical joint. The wall is aligned with ĵI -k̂I
plane, and the aerial manipulator pulls the plug out of the socket
in -̂iI direction.

As in Fig. 2, we denote the frame of the inertial coordinate,
multirotor, 1st, 2nd servo motor and the end-effector by {I},
{B}, {1}, {2} and {E} respectively.

To express the state of an aerial manipulator, we define
the generalized coordinate q as [p>IB η> γ>]> consisting of
the position of the multirotor pIB =∆ [px py pz]

> ∈ R3,
Euler angles η =∆ [φ θ ψ]> ∈ R3 where φ, θ and ψ represent
roll, pitch and yaw angles, and the angles of servo motors
γ =∆ [γ1 γ2]> ∈ R2. Also, we let χ, r, xq and xr denote
[p>IB η>]>, [η> γ>]>, [q>q̇>]> and [r>ṙ>]>. To represent
inputs, we use uf and u to denote [T τ>b τ>γ ]> and [T τ>b ]>

where T , τb and τγ mean a total thrust, moments with respect
to îB , ĵB and k̂B and torque inputs exerted on the servo
motors. We let Q ∈ R3×3 denote a matrix which satisfies
ωBIB = Qη̇ and the scalar g the gravitational acceleration.
Moreover, we set ad, â and Ā as a desired trajectory, an
estimate of a and the nominal value of A.

We use mb, m1 and m2 to denote mass of the multirotor,
the 1st and the 2nd servo motor while diagonal matrices
Jb, J1, J2 in R3×3 are the moments of inertia of the
corresponding components. Additionally, JE ∈ R3×3 means
the moment of inertia of the end-effector.

C. Scenario

As in Fig. 2, the aerial manipulator tries to unplug in −îI
direction from the socket installed on the wall aligned with
ĵI -k̂I plane. After the plug is separated from the socket,
the vehicle quickly stabilizes its attitude in a short time and
maintains the hovering state.

III. HYBRID AUTOMATA OF AERIAL
PLUG-PULLING

We construct the elements of the hybrid automata listed
in Section II-A for the aerial manipulator pulling the plug.

A. Set of Operative Modes, M = {WP, ST, FF}

In WP (wire-pulling) mode, the aerial manipulator tries
to unplug by pulling the wire in −îI direction. In ST
(stabilizing) mode, the vehicle quickly stabilizes its attitude
immediately after the separation of the plug. In FF (free-
flight) mode, the aerial manipulator returns to the original
location and keeps the hovering state.



B. Domain Mappings, D(WP ), D(ST ) and D(FF )

• D(WP ) =∆ {(xr, uf ) ∈ R10 × R6 | FE,1 < FTH}
where FE is the interaction force acting on the end-
effector due to the friction between the plug and the
socket and FTH is the force limit up to which the plug
can resist from separating.

• D(FF or ST ) =∆ VF − D(WP ) where VF means an
R16 × R6 space representing the flight envelope, i.e.,
all possible regions of the state and inputs for the flight
experiment.

C. Flow Maps, f(WP,xr, uf ) and f(ST or FF, xq, uf )

1) WP mode: The derivation of f(WP,xr, uf ) is based
on [1], but since the position of the end-effector is fixed, we
newly derive it in the form of the Euler-Lagrange equation
with r = [η> γ>]> which fully describes the dynamics of
the wire-pulling aerial manipulator.

First we express position and angular velocity as

pIB = pIE −RIBpBE , pI1 = pIE +RIBpB1 −RIBpBE ,
pI2 = pIE +RIBpB2 −RIBpBE ,
ωBIB = Qη̇, ω1

I1 = R>B1(ωBIB + ωBB1),

ω2
I2 = R>b2(ωbIB + ωBB2), ωEIE = R>BE(ωBIB + ωBBE).

(1)

with the kinematic constraint ṗIE = 031 By substituting
(1) into the derivation process presented in [1], an Euler-
Lagrange equation of the wire-pulling aerial manipulator
model can be derived. Then, the obtained equation of motion
can be analyzed in the form of flow map as follows.

r̈ = f(WP,xr, uf ) = M−1r (−Cr−Kr+JTuruf +τe,r) (2)

where Mr ∈ R5×5, Cr ∈ R5, Kr ∈ R5,

Jur =∆
∂[ṗBIB

> ωBIB
>
γ̇>]>

∂r
∈ R6×5,

and τe,r means the external disturbance applied to the wire-
pulling aerial manipulator system. Thus, the variable xr
evolves in correspondence with (2).

2) ST and FF modes: The Euler-Lagrange equation for
the multirotor equipped with the 2 DOF robotic arm is
derived in [1]. Then, the flow map f(ST or FF, xq, uq)
can be derived as follows.

q̈ = f(ST or FF, xq, uq)

= M−1q (−Cq −Kq + JTuquf + τe,q) (3)

where Mq ∈ R8×8, Cq ∈ R8, Kq ∈ R8, Juq ∈ R6×8, and
τe,q means the external disturbance applied to the system in
free flight.

D. Set of Edges, E = {(WP,ST ), (ST, FF )}
There would be only two possible edges in our scenario

because the transition from ST or FF mode to WP mode does
not occur unless the plug is attached to the socket again.
Also, a change from FF to ST mode is impossible because
the ST mode is primarily designed as an intermediate stage
between the WP and FF modes.

E. Guard Mappings, G({WP,ST}) and G({ST, FF})
A transition from WP mode to ST mode occurs when the

îI element of FE exceeds FTH . Therefore, the guard map
G({WP,ST}) is defined as {(xr, uf ) ∈ D(WP ) | FE,1 =
FTH}. Also, since (φd, θd) in the ST mode are user-
defined values while they are computed from the user-
defined values of (xd, yd) in the FF mode, an undesirable
abrupt change in (φd, θd) would provoke a failure in attitude
control. Therefore, the guard map G({ST, FF}) is defined
as {(xq, uf ) ∈ D(ST ) | ‖η‖ < δη, td,ST ≤ t} where δη is
defined as the threshold of η for the mode change.

F. Reset maps, R({WP,ST}, (xr, uf )) and
R({ST, FF}, (xq, uf ))

If the operative mode changes from WP to ST, there
would be jumps in xq due to the sudden disappearance of
the force exerted on the end-effector. However, since we
cannot know the exact magnitude of the jumps in xq , we
denote it by xq which satisfies ṗIE(xq) 6= 031. Then, the
reset map R({WP,ST}, (xq, uf )) is expressed as {x+q ∈
Dx+

q
(ST ) | ṗIE(x+q ) 6= 031 where xr ∈ Dxr (WP )}. On the

other hand, the change from ST to FF does not entail any
jump in xq because they evolve under the same dynamics.
Therefore, the reset map R({ST, FF}, (xq, uf )) can be
derived as {x+q ∈ Dx+

q
(FF ) | x+q = xq where xq ∈

Dxq (ST )}.

IV. TRAJECTORY GENERATION AND
CONTROLLER DESIGN

A. Trajectory Generation

It is assumed that γ and γ̇ exactly follow γd and γ̇d
respectively and the desired values that are not defined at
each mode are set to be the same as the current values.

1) WP mode: In this mode, the aerial manipulator tries to
tilt its body with respect to −ĵB in order to exercise a pulling
force to the socket. Therefore, ηd(t) is given as below,

ηd(t) =

{
[0 − θm(

t−t0,WP

td,WP−t0,WP
) 0]>, t0,WP ≤ t < td,WP

031, td,WP ≤ t
(4)

where θm means the maximum absolute value of the pitch
angle. It prevents a sudden transition to ST mode by
gradually tilting the vehicle’s body.

2) ST mode: This mode is proposed for compensating the
overshoot invoked by the transition of the dynamical model
and avoiding an abrupt change in φd(t) and θd(t). In order
to simultaneously minimize the overshoot and make φ and
θ close to zero, the time interval [t0,ST , td,ST ) needs to be
reasonably small. Therefore, pz,d(t) and ηd(t) are set as

pz,d(t) = pz(t0,ST )

ηd(t) =

{
c2t

2 + c1t+ c0, t0,ST ≤ t < td,ST

031, td,ST ≤ t
(5)

where coefficients c0, c1 and c2 satisfy the condi-
tions ηd(t0,ST ) = η(t0,ST ), η̇d(t0,ST ) = η̇(t0,ST ) and
ηd(td,ST ) = 031.



Fig. 3: The DOB structure of WP mode for compensating the model
discrepancy ∆η between (8) and (9).

3) FF mode: In FF mode, pIb and ψ are set to fly back
to the original position as follows:

pIb,d(t) = pIb(t0,WP ), ψd(t) = ψ(t0,WP ) (6)

B. Nominal Model for Each Mode

Servo motors are usually controlled by the given desired
position, not torque. Therefore, the equations of motion that
eliminate the term τγ are derived for each model.

1) WP mode: In (2), Jur is computed as

J>ur =

[
J>Tη Q> 032
J>Tγ 023 I2

]
, JTη ∈ R1×3, JTγ ∈ R1×2. (7)

Therefore, the model with respect to η is obtained with
known values T , γ, γ̇ and an observable value γ̈ as follows.

η̈ = Fη +Gητb (8)

where

Fη =∆ M−1η {−Cη −Kη −Mηγ γ̈ − J>TηT − τe,r}
Gη =∆ M−1η Q>

with block matrices Mη = Mr,1:3,1:3, Mηγ = Mr,1:3,4:5,
Cη = Cr,1:3,1 and Gη = Gr,1:3,1. Then based on this, the
nominal model for the WP mode can be obtained as follows.

η̈ = F̄η + Ḡητb0 (9)

where

F̄η =∆ M̄−1η {−C̄η − K̄η − M̄ηγ
¨̂γ − J̄>TηT}

Ḡη =∆ J̄−1b Q>
(10)

with the nominal input u0 = [T τ>b0]>. The total thrust T is
calculated in the DOB controller introduced in [17].

2) ST and FF mode: The nominal model for ST and FF
mode is derived in [17] as below.

q̈u = ḠuΦ0, q̈f = F̄f + Ḡfu0 (11)

where qu and qf mean the center of mass of [px py]> and
[pz η>]> respectively. The other notations are defined in
[17].

C. Controller Design

1) WP mode: If we design the nominal input τb0 to make
the solution of (9) adequately follows ηd, the compensation
of model discrepancy, ∆η =∆ (Fη − F̄η) + (Gητb − Ḡητb0),
is conducted by the DOB structure presented in [10]. The
overall diagram is shown in Fig. 3 and the detailed DOB
control law is formulated as below.

q̇ηi = Aη,iq
η
i +Bη,iηi, ṗηi = Aη,ip

η
i +Bη,iτb2,i

uηi = pηi,1 −
3∑
j=1

Λη,i,j(q̇
η
j,2 − F̄η,j), τb1 = ΛηḠητb0

τb2 = ΛηḠητb0 + Πη(uη), τb = τb0 + (ΛηḠη)−1Πη(uη)
(12)

where qη = [qη1,1 q
η
1,2 ... q

η
3,2]>, pη = [pη1,1 p

η
1,2 ... p

η
3,2]>,

uη = [uη1 u
η
2 u

η
3 ]> and

Aηi =

[
0 1

−aηi,0/ε2η −aηi,1/εη

]
, Bηi =

[
0

aηi,0/ε
2
η

]
Λη = J̄

(1/2)
b Q ∈ R3×3

with the positive constants aηi,0, aηi,1 and the small positive
constant εη . In this DOB structure, we use a saturation
function Πη defined with the conditions below.
• Πη: R3 ⇒ R3 is a globally bounded C1 function.
• Πη(uη) = uη for ∀uη ∈ Suη where Suη =∆ {uη ∈

R3×1 | uη = ΛηḠηG
−1
η (F̄η−Fη+(Ḡη−Gη)τb0−∆η)}.

• ‖∂Πη(uη)/∂uη‖ ≤ 1 for ∀uη ∈ R3×1

From the conditions above, the quasi-steady state range of
uη satisfies the equation uηi = pηi,1−

∑3
j=1 Λη,i,j(q̇

η
j,2−F̄η,j)

while avoiding the saturation [10].
2) ST mode: For the ST mode, we only apply the DOB

structure for the fully-actuated system introduced in [18].
3) FF mode: We will utilize the same controller presented

in [17] for the FF mode.

V. STABILITY AND ROBUSTNESS ANALYSIS

In this section, an analysis of the stability and robustness
will be presented. During the analysis, the term maneuver
which means [x>q u

>
f ]> in a particular mode will be used.

vµ and v̄Nµ mean the solution from the actual flow map and
the nominal flow map. Additionally, trvµ is defined as a set
including all values of vµ in the given time interval.

A. Preliminary Definitions for the Analysis on Hybrid Au-
tomata

Definition 1 (σ-robust µ1-single maneuver in [t0,µ1
, t1)). For

σ > 0, µ1 ∈ M and 0 < t1, a maneuver v̄Nµ1
∈ [t0,µ1 , t1)µ1

satisfies

tr v̄Nµ1

⋂( ⋃
{µ1,µ′}∈E

G({µ1, µ
′}) + Bσ

)
= ∅. (13)

Here, [t0,µ, t1)µ means the time interval where v̄NWP

evolves in the mode µ within [t0,µ, t1).

Definition 2 (σ-robust µ1 7→ µ2 approach maneuver in
[t0,µ1 , t1)). For σ > 0, µ1, µ2 ∈ M and t0,µ1 ≤ t1, a
maneuver v̄Nµ1

∈ [t0,µ1 , T ]µ1 satisfies
• tr v̄Nµ1

⋂(⋃
{µ1,µ′

2}∈E−{µ1,µ2} G({µ1, µ
′
2}) + Bσ

)
= ∅

and Bσ(v̄Nµ1
) ⊂ G({µ1, µ2})

• Let Sµ1 and Sµ1→µ2 be compact sets defined as Sµ1 =∆

(trv̄Nµ1
+ Bσ) ∩ G({µ1, µ2}) and

Sµ1→µ2 =∆ {x+q ∈ Dxq (µ2) | x+q ∈
R({µ1, µ2}, (xq, uf ) for some (xq, uf ) ∈ Sµ1} (14)



Then, for any x+q ∈ Sµ1→µ2 there exists u+f such that

(x+q , u
+
f ) /∈

⋃
{µ2,µ′

2}∈E

G({µ2, µ
′
2}) + Bσ. (15)

Definition 3 ((σ, δσ)-robust Sµ1 7→µ2 coverage set, Cµ1 7→µ2

δσ
).

A set of Nδσ elements xq,1, ..., xq,Nδσ ∈ Dxq (µ2) which
satisfies

Sµ1 7→µ2 ⊂
⋃

j∈{0,...,Nδσ}

Bδσ (xq,j). (16)

Definition 4 ((σ, δσ)-robust µ1 7→ µ2 transition maneuver).
For σ > 0, δσ > 0, µ1, µ2 ∈ M and t0,µ1

< t1, v̄Nµ1

which is a union of a σ-robust µ1 7→ µ2 approach maneuver
before the switching time T ∈ (t0,µ1

, t1) and of a set of Nδσ
σ-robust single maneuvers after transition with the property
vµ2,j ∈ C

µ1 7→µ2

δσ
,∀j ∈ {1, ..., Nδσ}.

B. Robustness of the Nominal maneuver

With the assumption that xq of the nominal maneuver v̄Nµ
adequately follows xq,d defined through (4) – (6), we analyze
the characteristics of the nominal maneuver.

1) (σ, δσ)-robust WP 7→ ST transition maneuver: With
the assumption that the aerial manipulator is in a quasi-
equilibrium state while perching on the wall, the pulling
force FE,1 is equal to−T sin θ [4]. Thus, FE,1 increases with
the gradually decreasing trajectory of θ as generated in (4).
As a result, v̄NWP does not reach G{(WP,ST )}+Bσ before
FE,1 closely approaches FTH . Moreover, as depicted in Fig.
4a, there is no possibility of a transition from WP to FF
mode because G{(WP,FF )} is defined as ∅. Therefore,
the maneuver v̄NWP is proved to be a σ-robust WP -single
maneuver in [t0,WP , t0,ST ).
v̄NWP can also become a σ-robust WP 7→ ST approach

maneuver when there exists a time instant that a change from
WP to ST occurs in a finite time. Thanks to the relation
that FE,1 equals to −T sin θ, we can easily find a sufficient
condition 0 < FTH < Tm sin θm where Tm means the
maximum value of T . The inequality above infers that FE,1
can reach FTH with the given trajectory of θ. Additionally,
since the direct change from WP to FF mode never occurs
as mentioned above, the claim that v̄NWP is a robust approach
maneuver is proved.

After the transition from WP to ST mode, the reset map
of v̄NWP is uncertain. However, we can avoid the situation
where the value of R({(WP,ST )}, (xr(t0,ST ), uf (t0,ST )))
becomes an element of D(FF ) the switch from ST to FF
does not occur before the time reaches the value of td,ST
by the condition td,ST < t in G{(ST, FF )}. Therefore,
a maneuver v̄NWP turns out to be a σ-robust ST -single
maneuver in [t0,WP , t0,ST ) after the mode transition. From
the analyses above, the union of trv̄NWP and trv̄NST is proved
to be a (σ, δσ)-robust WP 7→ ST transition maneuver.

2) (σ, δσ)-robust ST 7→ FF transition maneuver: As
proved in the previous section, the maneuver v̄NST is a σ-
robust ST -single maneuver in [t0,ST , t0,FF ). Also, there
must be a change from ST to FF mode in a finite time
since ηd defined in ST mode reaches 031 when t reaches

(a) σ-robust WP 7→ ST approach maneuver

(b) (σ, δσ)-robust WP 7→ ST transition maneuver.
Fig. 4: Venn diagram demonstrating hybrid automata in WP and
ST modes. (a) A red dashed line means the trace of the nominal
maneuver in WP mode. A yellow region describes the set of
possible maneuvers which can provoke a change from WP to ST
mode. (b) A green region expresses the set of reset maps from the
maneuvers initiating from the yellow region. Blue dashed circles
are centered in Nδσ elements in CWP 7→ST

δσ and have the radius
δσ . Red dashed arrows describe Nδσ maneuvers starting from xq,j
where j = 1, ..., Nδσ . Following Definition 3, all the blue dashed
circles cover the green region.

td,ST . Also, since the transition from ST to WP mode is
impossible, v̄NST also turns out to be a σ-robust ST 7→ FF
approach maneuver in [t0,ST , t0,FF ).

Accordingly, the property that (FF, ST ) and (FF,WP )
are not the elements of E also guarantees that a maneuver
v̄NFF is a σ-robust FF -single maneuver in [t0,FF , td,FF ).
Thus, it is proved that the union of trv̄NST and trv̄NFF becomes
a (σ, δσ)-robust ST 7→ FF transition maneuver.

C. Analysis on Stability and Robustness at Each Mode

1) Wire-pulling mode: Prior to formulating a theorem
about the stability and robustness of the WP mode, there
need some remarks and assumptions as below.

Remark 1. ηd, η̇d, η̈d are continuous and bounded in C2. In
addition, let ηd ∈ Sηd where Sηd is a known compact set.

Assumption 1. Let η̄N (t) be the nominal solution of (9). For
given ηd, the solution η̄N (t) evolves in a bounded set Uη if
the initial condition η̄N (0) is in a compact set Sη ⊂ Uη , and
η̄N (t)−ηd(t) initiated in Sη is locally asymptotically stable.

Assumption 2. According to [18], the aerodynamic effects,
such as drag or buoyancy forces, are negligible in a near
hovering condition due to the small size of the multirotors.
Also, frictional torque and force applied on the end-effector
are at least C2 and bounded in Uη because they are functions
of r and ṙ.

Remark 2. The terms Mr, M̄r, Mηγ γ̈, M̄ηγ
¨̂γ, Cr, C̄r, Gr,

Ḡr, Jur and J̄ur are vectors and matrices which consist of
r, ṙ and r̈. Thus, these terms are at least C2 and bounded
in Uη . Moreover, by the assumption 2, τe,r is also a vector
that is C2 and bounded in Uη . Since Fη , F̄η , Gη and Ḡη
have the terms described above, vectors and matrices shown
in (9) are all at least C2 and bounded in Uη .

Then finally, from the assumptions and remarks stated



above, we can formulate a theorem on the relationship similar
to the theorem introduced in [17] and prove it.

Theorem 1. Let Sηqp be a compact set for the initial condition
[qη(0)> pη(0)>]>, and S̄η be a compact set smaller than
Sη . For a given σ > 0, there exists ε∗η such that, for each
0 < εη < ε∗η , the solution of (9), [η̄N (t)>η̇N (t)>τ̄Nb0 (t)>]>,
and that of (8), [η(t)>η̇N (t)>τb0(t)>]>, initiated at
[η(0)>η̇(t)>τb0(t)>qη(0)>pη(0)>]> ∈ S̄η × Sηqp satisfies

‖[η(t)>η̇(t)>τb0(t)>]

− [η̄N (t)>η̇N (t)>τ̄Nb0 (t)>]‖ ≤ σ, ∀t ≥ 0

if we set the initial conditions for both dynamic models iden-
tical, [η̄N (0)>η̇N (0)>τ̄Nb0 (0)>]> = [η(0)>η̇(0)>τb0(0)>]>.

Proof: Proof of this theorem will follow the procedure
introduced in [18]. �

Lemma 1. With fast variables ξη =∆ [ξηT1 ξηT2 ξηT3 ]> and
ζη =∆ [ζηT1 ζηT2 ζηT3 ]> ∈ R6×1 defined as

ξηi =

[
ξηi,1
ξηi,2

]
=

[
1
εη
qηi,1 +

aηi,1
aηi,0

qηi,2 − 1
εη
ηi

qηi,2 − η̇i

]
∈ R2×1

ζηi =

[
ζηi,1
ζηi,2

]
=

[
pηi,1 − Λiq̇

η
i,2

εη(ṗηi,1 − q̈
η
i,2)

]
∈ R2×1,

(17)

the closed-loop system of the actual model describing wire-
pulling mode can be rearranged in the standard singular
perturbation form as follows.

η̈ = Fη +Gη(τb0 + (ΛηḠη)−1Π(uη)) + ∆η

εη ξ̇
η
i = Aηξ,iξ

η
i − εηB

η
2 (Fη,i +Gη,iτb + ∆η,i)

εη ζ̇
η
i = Aηζ,iζ

η
i +Bη2a

η
i,0(τb2,i

−
3∑
j=1

Λη,i,j(Fη,j +Gη,jτb + ∆η,j))

(18)

where Bη2 =∆ [0 1]> and

Aηξ,i =∆
[
−aηi,1 1

−aηi,0 0

]
, Aηζ,i =∆

[
0 1
−aηi,0 −aηi,1

]
.

Proof: The derivation of Lemma 1 is based on [19,
Appendix A]. �

To obtain the reduced model of (8), the quasi-states of (ξη ,
ζη) are obtained as follows by setting εη = 0.

ξη,∗ = 061

ζη,∗[1] = τb2 − Λη(Fη +Gητb + ∆η), ζη,∗[2] = 031
(19)

where ζη,∗[1] =∆ [ζη,∗1,1 ζ
η,∗
2,1 ζ

η,∗
3,1 ]> and ζη,∗[2] =∆ [ζη,∗1,2 ζ

η,∗
2,2 ζ

η,∗
3,2 ]>.

Since uη turns out to be equal to ζη[1] + ΛηF̄η from (12)
and (17), an equation on uη∗ can be formulated as

uη∗ − Λη((F̄η − Fη) + (Ḡη −Gη)τb0 −∆η)

− (I3 − ΛηGηḠ
−1
η Λ−1η )Πη(uη∗) = 031. (20)

Moreover, since uη∗ ∈ Suη , Πη(uη∗) equals uη∗. Therefore,
an explicit expression for uη∗ is obtained as follows.

uη∗ = ΛηḠηG
−1
η (F̄η − Fη + (Ḡη −Gη)τb0 −∆η) (21)

The next step is to show that the only solution for (20) is
(21). Thus, we declare a function Γη(δ) which replaces uη∗

in (20) with uη∗ + δ as below.

Γη(δ) =∆uη∗ + δ − Λη((F̄η − Fη) + (Ḡη −Gη)τb0 −∆η)

− (I3 − ΛηGηḠ
−1
η Λ−1η )Πη(uη∗ + δ)

=δ + (ΛηGηḠ
−1
η Λ−1η − I3)(Πη(uη∗ + δ)−Πη(uη∗)).

Lemma 2. With the assumption that η ∈ Uη , Γη(δ) belongs
to the sector [1−κ, 1+κ] with 0 < κ < 1. Then accordingly,
δ = 031 is the unique solution of Γη(δ) = 031.

Proof: From the definition of Γη(δ), the following
inequality is derived.

|Γη(δ)−δ| ≤ ‖I3−ΛηGηḠ
−1
η Λ−1η ‖|Πη(uη∗+δ)−Πη(uη∗)|

Since ‖∂Πη(uη)/∂uη‖ ≤ 1, the inequality above is trans-
formed into

|Γη(δ)− δ| ≤ ‖I3 − ΛηGηḠ
−1
η Λ−1η ‖|δ|.

Based on (1) and the relation ṘIB = RIB [ωBIB ], if θ ∈
(−π2 ,

π
2 ), M∗η =∆ Q−>MηQ

−1 is organized as follows.

M∗η = mb[RIbp̂bE ]>[RIbp̂bE ] +m1[RI1p̂
b
1E ]>

× [RI1p̂
b
1E ] +m2[RI2p̂

b
2E ]>[RI2p̂

b
2E ] + Jb

+R>b1J1Rb1 +R>b2J2Rb2 +R>bEJERbE

(22)

If we set J̄b < Jb, we can formulate the inequality below by
substituting (10) and Λη = J̄

(1/2)
b Q since Jb < M∗η .

‖I3 − ΛηGηḠ
−1
η Λ−1η ‖ = ‖I3 − J̄

1
2

b M
∗−1
η J̄

1
2

b ‖ < 1. (23)

Thus, |Γη(δ)− δ| turns out to be smaller than |δ| and there
exists κ ∈ (0, 1) such that Γη(δ) belongs to the sector [1 -
κ, 1 + κ]. Accordingly, it is shown that the only solution of
Γη(δ) = 031 is δ = 031. �

To prove that the fast dynamic system in Lemma 1 is ex-
ponentially stable, we derive 1st order differential equations
for ξ̃η =∆ ξη − ξη∗ and ζ̃η =∆ ζη − ζη∗ as

εη
˙̃
ξη = Aηξ ξ̃

η − εηBη2{Fη +Gητb0 +GηḠ
−1
η Λ−1η

×Πη(ζη∗[1] + ζη[1] + F̄η) + ∆η}

εη
˙̃
ζη = Aη

ζ̃
ζ̃η −Bη2a

η
0Γη(ζ̃η[1])− εηB

η
1 ζ̇
η∗
[1]

(24)

where ζ̃η[1] =∆ ζη[1]−ζ
η∗
[1] , A

η
ζ =∆ blkdiag{Aη1 , A

η
2 , A

η
3}, B

η
1 =∆

I3 ⊗ [1 0]>, Bη2 =∆ I3 ⊗ [0 1]>, aη0 =∆ diag{aη1,0, a
η
2,0, a

η
3,0}

and Aη
ζ̃

=∆ blkdiag{Aη
ζ̃,1
, Aη

ζ̃,2
, Aη

ζ̃,3
} with Aη

ζ̃,i
=∆[

0 1
0 −aηi,1

]
.

Remark 3. Since ‖ΛηGηḠ−1η Λ−1η − I3‖ ≤ κ < 1, the given
inequality

|ΛηGηḠ−1η Λ−1η v|2

< (ΛηGηḠ
−1
η Λ−1η v)>v + v>(ΛηGηḠ

−1
η Λ−1η v)

holds ∀v 6= 031. If there exists v̄ 6= 031 satisfying
ΛηGηḠ

−1
η Λ−1η v̄ = 031, it becomes contrary to the inequality



above. Therefore, ΛηGηḠ
−1
η Λ−1η is an invertible matrix.

Accordingly, since Gη is not singular, ‖Ḡ−1η ‖ is bounded.
Moreover, since ‖Ġ−1η ‖ ≤ ‖G−1η ‖‖Ġη‖‖G−1η ‖ holds and
(Ḡ−1η , ˙̄G−1η ) are bounded in Uη based on the relationship
Ḡη = J̄−1b QT , ‖Ġη‖ is also bounded.

Remark 4. Since the initial condition in Theorem 1 is
[η̄N (0)> ˙̄ηN (0)> τ̄Nb0 (0)>]> = [η(0)> η̇(0)> τb0(0)>]>

and η is bounded due to Remark 2 and the definition of
Πη , there exists T1 > 0 such that [η(t)>τ>b0]> remains in
Uη for t ∈ [0 T1]. Also, there exists T2 > 0 such that
|[η(0)> η̇(0)> τb0(0)>]> − [η̄N (0)> ˙̄ηN (0)> τ̄Nb0 (0)>]>| ≤
σ/2 for t ∈ [0 T2].

Lemma 3. For tf =∆ min{T1, T2}, there exists ε∗η such that
the solutions of (24) initiated from any ξ(0) and ζ(0) satisfies

|[ξ̃η(t)> ζ̃η(t)>]>|
≤ λ1e−λ2(t/εη)|[ξ̃η(0)> ζ̃η(0)>]>|+ Ω(εη) (25)

for ∀ t ∈ [0 tf ] and 0 < εη ≤ ε∗η , with some positive
constants λ1 and λ2, and a class-K function Ω.

Proof: The proof of Lemma 3 is presented in [17]. �
From the quasi-steady state results in (19) and (21), the

reduced model of (8) is derived as

η̈ = Fη +Gη(τb0 + (ΛηḠη)−1Π(uη∗)) + ∆η

= Fη +Gητb0 +GηḠ
−1
η uη∗ + ∆η

= F̄η + Ḡητb0

(26)

which is exactly identical to the nominal model of
WP mode (9). From Remark 4 and Lemma 3,
|[η(0)> η̇(0)> τb0(0)>]> − [η̄N (0)> ¯̇ηN (0)> τ̄Nb0 (0)>]>| ≤
σ/2 for t ∈ [0 T2] holds and |[ξ̃η(tf )> ζ̃η(tf )>]| → 0 as
εη → 0. From those aspects, we can show the result of
Theorem 1 by applying Tikhonov’s theorem for the infinite
time interval presented in [20, p.456].

2) ST and FF modes: Due to Theorem 1 in
[17] and [18], for a given σ > 0, the inequality
|[χ(t)> χ̇(t)> u0(t)>]>− [χ̄N (t)> ˙̄χN (t)> uN0 (t)>]>| ≤ σ
holds in ∀t > 0 if the condition [χ(0)> χ̇(0)> u0(0)>]> =
[χ̄N (0)> ˙̄χN (0)> uN0 (0)>] is satisfied.

D. Stability and Robustness Analysis for the Entire Opera-
tion

It is shown that the union of v̄NWP , v̄NST and v̄NFF is
a σ-robust WP 7→ ST and ST 7→ FF transition ma-
neuver. Also, with the condition σ ≤ δη , η in ST mode
unconditionally reaches G{(ST, FF )} in a finite time since
‖[η>τ>b ]>− [η̄Nτ>b,0]>‖ ≤ ‖vST − v̄NST ‖ ≤ σ ≤ δη is proved
to be valid in ST mode. Subsequently, it is also proved that
the actual value of xr and xq throughout the whole three
modes satisfies the inequalities ‖[x>r u>f ]> − v̄NWP ‖ ≤ σ and
‖[x>q u>f ]> − v̄NST or FF ‖ ≤ σ when the initial values of the
solutions from the nominal and actual models are identical.
Therefore, the stability and robustness of the whole plug-
pulling task with the trajectories (4)-(6) and the proposed
control structure are guaranteed.

(a) Overall view (b) Detail view
Fig. 5: The stand for a 110 V socket used for the plug-pulling
experiment

Fig. 6: Strategy for generating control input u in WP mode while
conducting the actual experiment. We use the controller presented
in [17] for the position and attitude control.

VI. EXPERIMENTAL RESULT & DISCUSSION

A. Experimental Setup

The experimental setup for this study consists of three
parts: a hexacopter, a robotic arm, and a frame for the plug-
socket system. We assembled the hexacopter with the off-
the-shelf frame DJI F550, six KDE2315XF-967 motors with
corresponding KDEXF-UAS35 35A+ electronic speed con-
trollers and 9-inches T-Motor polymer rotors, two Turnigy
LiPo batteries for power supplement, and Intel NUC for
computing. It executes the proposed DOB controller, the
Kalman filter for estimating the value of γ̈ and the navigation
algorithm with OptiTrack on Robot Operating System (ROS)
in Ubuntu 18.04, and a flight controller Pixhawk 4, all on-
board. The robotic arm is comprised of ROBOTIS dynamixel
XH430 and XM540 servo motors. We manufacture a stand
for a 110 V socket and firmly attach it to the wooden plate
which weighs about 11 kg as in Fig. 5.

As depicted in Fig. 1, the plug is connected to a wire held
by the end-effector. Since this is different from the perching
model described in Fig. 2, we modify some strategies for the
trajectory generation and the controller design to maintain the
end-effector’s position fixed. For this, we turn on the position
controller in ĵI and k̂I directions as in Fig. 6.

We set θm as 20 deg and the stabilizing time td,ST −t0,ST
as 0.08 sec. Also, the threshold for the mode change from
ST to FF, δη , is set as 5 deg.

The scenario of the experiment is as follows. At first, the
aerial manipulator takes off until the end-effector aligns with
the plug attached to the socket. Then, the vehicle flies in −îI
direction to tighten the wire. When the wire becomes tight
enough, we send a command to begin the WP mode and
the vehicle gradually tilts its body. By the time when the
plug is separated from the socket, we manually switch to ST
mode and the vehicle automatically turns into FF mode when
the Euler angles become reasonably small. Finally, the aerial
manipulator returns to the original position and maintains the
hovering state.



Fig. 7: History of the states of multirotor through the entire
operative modes. A white region expresses the FF mode, a magenta
region expresses the WP mode and a green region expresses the
ST mode. The dashed blue line describes the desired values of the
states. The red line represents the measured values of the states.

B. Experimental Results

Fig. 7 shows that the measured value of θ adequately
follows θd until it reaches −14.4 deg. From this result, we
can confirm that the control structure introduced in (9) is
valid for the given task. Also, from the plots of px, py and pz
in Fig. 7, we can observe that the aerial manipulator recovers
its original position at about 12 sec. This result shows that
the hybrid automata of the aerial manipulator conducting the
plug-pulling are stable and robust to the sudden change of
interaction force.

On the other hand, as can be seen in the attached video, if
a standard PID controller is employed for the wire-pulling, θ
cannot adequately follow the desired value θd. Accordingly,
after the plug is separated from the socket, the vehicle fails
to maintain its stability and crashes to the floor.

VII. CONCLUSION

This paper presents an aerial manipulator consisting of
a multirotor and a 2-DOF robotic arm pulling a plug out
of a socket. To demonstrate aerial plug-pulling, the concept
of hybrid automata is used to divide the mission into three
operative modes of wire-pulling, stabilizing, and free-flight.
The strategy for trajectory generation and design of DOB
controllers based on the dynamical models of each operative
mode are presented. Then, we prove the overall stability and
robustness of the plug-pulling and validate them through the
actual experiment. As a result, we confirm that the pitch
angle can robustly track the desired pitch trajectory by our
proposed DOB controller, and the overall sequence of the
plug-pulling task is executed without destabilization. For
future work, autonomous grasping of a plug with an aerial
manipulator can be included.
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