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Aerial Manipulator Pushing a Movable Structure
using a DOB-based Robust Controller

Dongjae Lee1, Hoseong Seo1, Inkyu Jang1, Seung Jae Lee2 and H. Jin Kim1

Abstract—This paper deals with the problem of an aerial
manipulator pushing a movable structure. Contrary to physical
interaction with a static structure, suitable consideration of the
interacting force during the motion of the structure is required to
stably perform this movable structure interaction. To accomplish
the task of pushing a structure while ensuring the stability
of the aerial manipulator, we present a nonlinear disturbance-
observer (DOB)-based robust control approach by regarding the
interaction force as a disturbance to the system. Furthermore, to
utilize the proposed controller for pushing a movable structure,
we propose an algorithm to generate an end-effector position
reference that enables safe operation in a realistic situation.
We validate the proposed control framework with successful
demonstrations on pushing two types of movable structures, a
heavy rolling cart (42 [kg]), and a real-like hinged door.

Index Terms—Aerial Systems: Applications, Aerial Systems:
Mechanics and Control, Robust/Adaptive Control.

I. INTRODUCTION

AERIAL robots have been extensively studied for over a
decade thanks to its inherent strength of high mobility

in three-dimensional space. Focused on this strength, aerial
robots have been deployed mainly for exploration or surveil-
lance. However, these conventional aerial robots can only
perform interaction-free, non-active tasks; therefore, additional
ground robots or human operators are required for the physical
interaction with the surrounding environment.

To resolve this issue, a new concept of an unmanned aerial
manipulator (UAM), which is a platform combining an aerial
vehicle and a manipulator, is introduced [1]. Several existing
studies [2–9] deal with a situation involving an interaction with
a static structure; however, these concepts can be limited due
to the unexpected motion of the structure or the time-varying
nature of interactions if they were applied to an interaction
task of pushing/pulling a movable structure: 1) a structure for
which pushing/pulling is a more suitable strategy than lifting-
and-transporting to move the structure (e.g. a suitcase or a
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Fig. 1. Experimental results on pushing a rolling cart ((a) and (b)) and a
real-like hinged door ((c) and (d)).

rolling cart); or 2) a structure that is fixed in a certain direction
so that only pushing/pulling is available to move the structure
(e.g. a drawer or a door). There exist a few papers [10–14]
on interaction with a movable structure; nonetheless, none of
them explicitly consider the stability in the controller design
during the motion of the interacting structure. Therefore, to
stably interact with a dynamic structure using a UAM, a new
methodology is required.

A. Related works

1) Movable structure: In [10], experimental results on a
conventional, underactuated multirotor-based UAM (mUAM)
pushing and pulling a drawer are presented with a dedi-
cated controller for the coupled system dynamics between the
mUAM and the drawer. Opening a miniature door is performed
in [11] in which a compliant end-effector is designed to grasp
a door handle. Nevertheless, both of these papers assume
that the interaction force from the motion of the structure
is negligible which is not the case for interaction with a
structure of a non-negligible inertia. [12] shows an mUAM
rotating a valve after perching on it; however, since this
task only requires a yawing motion of an mUAM, only one
decoupled direction of motion is considered. Finally, in [13],
a mechanism design for perching and pushing is proposed for
a multirotor to perch and open a hinged door. Although this
work shows pushing an actual hinged door, the development
of the dedicated platform may require a complex design, and it
will be difficult to be employed for other general purpose. Our
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previous work [14] also performs pushing a real-like hinged
door with an mUAM; however, only interaction with a hinged
door of known physical properties is considered. Also, position
tracking can degrade because the position controller assumes
no time delay in both roll and pitch angles.

2) Static structure: As introduced in I-A1, few works on
interaction between UAM and a movable structure consider
an interacting force due to the motion of the structure in
the controller design, which cannot be ignored in general.
Given such a lack of previous work, as an alternative, we
review state-of-the-art control approaches for the UAM –
static-structure interaction.

We categorize existing approaches related with UAM –
static-structure interaction control into the following three
based on how contact forces are considered1: 1) model-
based approach [2, 3, 7, 9]; 2) measurement/estimation-based
approach [4, 6, 8, 15]; and 3) robust-control-based approach
[16, 17]. Most works in the model-based category assume
a static environment and model the external force with a
quasi-static force. However, this assumption no longer holds
when a structure with a non-negligible inertia starts to move
with unknown dynamics, and this could lead to tracking
performance degradation or even instability.

For the measurement/estimation-based approach, several
papers including [4, 6, 8] focus on tracking a force reference
and/or tracking an end-effector reference trajectory while
maintaining contact with a static surface. Although this force
tracking control approach is a possible solution for inter-
action with a movable structure, further considerations are
required for constructing a reference force trajectory to move
a structure. Furthermore, most of their algorithms cannot be
directly applied to a conventional mUAM since, unlike fully-
actuated platforms employed in their works, the full external
wrench acting at the end-effector cannot be controlled solely
by the multirotor base due to its underactuatedness. The issue
from underactuatedness can be overcome by augmenting a
multiple-DoF (degrees of freedom) robotic arm to the classical
multirotor, and [15] shows a compliant behavior of the mUAM
against external force through a rope/bar at the end-effector
while [4] executes a constant force tracking with the mUAM
in simulations.

In contrast to the two approaches described above where
the motion controller directly exploits the knowledge of
the external force either from a model or from a mea-
surement/estimation, the robust-control-based approach rather
regards the external force as a disturbance to the system
and designs a controller robust to such disturbance. As in
[16, 17], although only perching on a vertical wall is presented,
robust stability can be guaranteed which most of the previous
methods do not tackle.

B. Contributions

This paper presents a novel control framework and ex-
perimental validation for interaction with different types of

1The Approaches that do not directly consider contact forces by employing
mechanical compliance as in [5] are neglected in this categorization.

movable structures. We propose a two-layered control al-
gorithm: 1) an end-effector position reference generator for
the mUAM to make the structure move, and 2) a robust
motion controller for tracking the reference while providing
robust stability against an interaction force. Particularly, we
present a simple yet effective strategy for moving the structure
by continuously updating the position reference of the end-
effector in the perpendicular direction of the structure’s contact
surface. In addition, we propose a disturbance-observer-(DOB)
based robust position controller which guarantees transient
performance recovery [18] of the underactuated subsystem
(3) and append the proposed DOB to the DOB structure [19]
implemented for the fully-actuated subsystem (2).

In this work, we use vi, 0j×k,⊗, Il, and ∥⋅∥ to denote ith

component/row of a vector/matrix v, zero matrix in Rj×k, a
Kronecker product, an identity matrix in Rl×l, and an induced
2-norm of a matrix. Also, for a column vector a and b, [a; b] ≔
[a⊤ b⊤]⊤. Lastly, c∗ and s∗ denote shorthands for cos(∗) and
sin(∗), respectively.

II. DYNAMICS

A. Actual dynamics

We consider an mUAM with an n-DoF robotic manipulator.
Defining a world frame FW = {OW , xW , yW , zW } and a
body frame FB = {OB , xB , yB , zB} with OB at the center
of mass (CoM) of the mUAM, both using the east-north-up
(ENU) convention, we denote the configuration of the mUAM
as qm = [pm;φ; θ] ∈ R6+n where pm = [pm,x; pm,y; pm,z] ∈
R3, φ = [φx;φy;φz] ∈ R3, and θ = [θ1;⋯; θn] ∈ Rn are the
position, the ZYX Euler angles of the multirotor in FW , and
the joint angles of the robotic manipulator, respectively. The
coupled system dynamics of the mUAM can be derived with
the Euler-Lagrange equation [19, 20]:

Mq̈m + Cq̇m +G = Jτm +∆m (1)

where M,C,G are the mass matrix, Coriolis-centrifugal ma-
trix, and gravitational term, J = blockdiag{Rte3, Q⊤, In} ∈
R(6+n)×(4+n), and τm = [T ; τφ; τθ] ∈ R4+n. Rt is the rotation
matrix of FB with respect to FW , and Q is the Jacobian
matrix satisfying ωB = Qφ̇. ωB ∈ R3 is the angular velocity
of FB written in FB , and e3 ∈ R3 is the unit vector in zW
direction. T ∈ R, τφ ∈ R3

, τθ ∈ Rn are the multirotor’s total
thrust in zB direction, the multirotor’s torque in FB , and joint
torques of the robotic manipulator. ∆m ∈ R6+n is an external
disturbance to the system.

As in many other works on mUAM (IV-B in [1]), we deploy
an exogenous motion controller for the robotic manipulator
and a robust motion controller for the multirotor. For the ease
of the following multirotor controller design, we elicit the
dynamics of the fully-actuated subsystem qf = [pm,z;φ] ∈ R4

by pre-multiplying M−1 and E1 = [04×2 I4 04×n] ∈ R4×(6+n)

sequentially to (1):

q̈f = Ff +Gfτ +∆f (2)

where Ff = −E1M
−1(Cq̇m +G), ∆f = E1M

−1
∆m, Gf =

E1M
−1
JE

⊤
2 , E2 = [I4 04×n] and τ = [T ; τφ] ∈ R4 is the

control input to the multirotor.
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For the underactuated dynamics of the mUAM, which is the
horizontal motion in FW , we construct the dynamics of the
CoM of the mUAM as in [19, 21]:

q̈u = GuΦ + δu (3)

Gu =
T
mc

Ψ,Ψ = [cφz sφz
sφz −cφz

] ,Φ = [cφxsφy
sφx

] ,

where qu = [pc,x; pc,y] ∈ R2 is the horizontal CoM position of
the mUAM in FW , and mc is the total mass of the mUAM.
δu is external disturbance acting in the horizontal direction,
including an interacting force. The underactuated subsytem
(3) can be controlled by roll and pitch references φx,r, φy,r,
and (3) is modified with Φr = [cφx,rsφy,r; sφx,r] ∈ R2 as

q̈u = GuΦr +∆u (4)

where ∆u ≔ Gu(Φ − Φr) + δu.

B. Nominal dynamics

We first derive the nominal dynamics of the fully-actuated
subsystem (2) with the following multirotor dynamics with
mass mc and mass moment of inertia JB in FB :

mcp̈m = −mcge3 + TRte3
JBω̇B = −ω̂BJBωB + τφ

(5)

where g ∈ R is the gravitational acceleration constant, and ∗̂
is a hat operator representing the cross product operation as
âb = a × b. Using ωB = Qφ̇ and (5), the nominal dynamics
of (2) can be written as

¨̄qf = F̄f + Ḡf τ̄ (6)

where

F̄f = [ −g
−Q−1Q̇φ̇ −Q−1J−1B ω̂BJBωB

]

Ḡf = [e
⊤
3 Rte3/mc 01×3

03×1 −Q−1Q̇φ̇ −Q−1J−1B ω̂BJBωB
] ,

and τ̄ is the nominal control input of τ in the nominal fully-
actuated subsystem. Likewise, we define the nominal dynamics
of (3) with the nominal control input Φ̄r of Φr as

¨̄qu = ḠuΦ̄r (7)

where Ḡu = T̄/mcΨ with T̄ being the nominal value of T .

III. CONTROLLER DESIGN

The primary objective in controller design is to guarantee
robust performance of the mUAM while interacting with a
movable structure. During the interaction, external forces on
the system are mainly due to a reaction force from the structure
to the mUAM, and this reaction force is highly related to
the relative position of the mUAM and the structure. Thus,
if the position tracking error of the mUAM is not suitably
controlled, the reaction force due to this error could deteriorate
the performance and even hinder the stability of the system.

To overcome this issue, we apply a robust motion controller
based on nonlinear DOB [18, 19]. Similar to [19], we adopt

Fig. 2. The proposed inner-loop controller for the underactuated subsystem
[18, 19].

the DOB design for the fully-actuated subsystem (2), but we
further develop and analyze the DOB structure for the underac-
tuated subsystem (4) to ensure transient performance recovery
without Φ = Φr assumption. This transient performance
recovery is an essential property for our scenario since the
position tracking error of the mUAM can be bounded during
both transient and steady-state phases even in the presence of
a disturbance.

A. DOB design for the underactuated subsystem

As in Fig. 2, the inner-loop DOB controller is designed as
follows:

q̇
u
i = Au,iq

u
i +Bu,iqu,i, ṗ

u
i = Au,ip

u
i +Bu,iΦ2,i

uu,i = p
u
i,1 − q̇

u
i,2, Φ1 = ḠuΦ0

Φ2 = ḠuΦ0 +Πu(uu) Φr = Φ0 + Ḡ
−1
u Πu(uu)

(8)

where qui = [qui,1; q
u
i,2] ∈ R2, pui = [pui,1; p

u
i,2] ∈ R2, and

Au,i = [ 0 1

−aui,0/ε2u −aui,1/εu
] , Bu,i = [ 0

a
u
i,0/ε2u

]

with aui,0, aui,1 and εu being positive parameters to be designed.
Also, qu = [qu1 ; q

u
2 ] ∈ R4, pu = [pu1 ; p

u
2] ∈ R4, and uu =

[uu,1;uu,2] ∈ R2. A saturation function Πu(⋅) is defined as
a globally bounded C1 function satisfying

Πu(u) = u ∀u ∈ Su, ∥∂Πu(u)/∂u∥ ≤ 1 ∀u ∈ R2

Su = {u ∶ u = ḠuG−1u ((Ḡu −Gu)Φ0 −∆u)} .

Finally, Φ0 is a control input designed from the nominal
dynamics (7).

Assumption 1. To show transient performance recovery with
the proposed inner-loop control law (8), we assume the
following:

1) External disturbance δu, the total thrust T and their
time-derivatives δ̇u, Ṫ are bounded (but the bounds can
be arbitrarily large).

2) The solution [q̄u(t); ˙̄qu(t); Φ̄0(t)] of (7), where Φ̄0(t)
is the outer-loop control law, evolves in an open, con-
nected and bounded set U ⊂ R6 if the initial condition
[q̄u(0); ˙̄qu(0); Φ̄0(0)] is located in a known compact set
S ⊂ U .

The first assumption on the boundedness of T and Ṫ is
legitimate considering the hardware implementation in which
the total thrust T and its time-derivative Ṫ are bounded
mechanically by motor specification. Furthermore, one could
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note that the second assumption on the boundedness of the
solution [q̄u(t); ˙̄qu(t); Φ̄0(t)] can be easily guaranteed by a
simple PD control.

Theorem 1. Let S̄ be a compact set slightly smaller than
S. For a given σ > 0, there exists ε∗u such that, for each
0 < εu ≤ ε

∗
u, the solution of the actual dynamics (4) and

the controller (8) initiated at [qu(0); q̇u(0); Φ0(0)] ∈ S̄ and
[pu(0); qu(0)] = 08×1 satisfies

∣[qu(t); q̇u(t); Φ0(t)] − [q̄u(t); ˙̄qu(t); Φ̄0(t)]∣ ≤ σ, ∀t ≥ 0

where [q̄u(t); ˙̄qu(t); Φ̄0(t)] is the solution from the nom-
inal dynamics (7) combined with the outer-loop control
law Φ0, with the initial condition [q̄u(0); ˙̄qu(0); Φ̄0(0)] =

[qu(0); q̇u(0); Φ0(0)].
Proof. The proof proceeds in the following three steps as
in [18]: 1) transformation of the closed-loop system into a
standard singular perturbation form (Lemma 1); 2) stability
analysis on the fast subsystem (Lemma 3) with the help of the
derived sector condition (Lemma 2); and 3) infinite interval
analysis with Tikhonov’s theorem [22, 23, p. 434].

As the first step, new coordinates ξi and ηi are defined for
p
u
i and qui :

ξi = [ξi,1
ξi,2

] =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

εu
q
u
i,1 +

a
u
i,1

aui,0
q
u
i,2 −

1

εu
qu,i

q
u
i,2 − q̇u,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R2

ηi = [ηi,1
ηi,2

] = [ p
u
i,1 − q̇

u
i,2

εu(ṗui,1 − q̈ui,2)
] ∈ R2

.

(9)

Lemma 1. With the newly defined coordinates ξ = [ξ1; ξ2] ∈
R4 and η = [η1; η2] ∈ R4 in (9), the closed-loop system of
the actual dynamics (4) and the inner-loop controller (8) can
be transformed into a standard singular perturbation form as

q̈u = Gu(Φ0 + Ḡ
−1
u Πu(uu)) +∆u (10a)

εuξ̇i = Aξ,iξi − εuB2(Gu,iΦr +∆u,i)
εuη̇i = Aη,iηi +B2a

u
i,0(Φ2,i − (Gu,iΦr +∆u,i))

(10b)

where B2 = [0; 1], and

Aξ,i = [−a
u
i,1 1

−aui,0 0
] , Aη,i = [ 0 1

−aui,0 −aui,1
] .

Proof. Please refer to the Appendix A in [24]. �

Quasi-steady state of ξi and ηi can be obtained from the
equation (10b) with εu = 0:

ξ
∗
i = [0

0
] , η∗i,2 = 0, η

∗
i,1 = Φ2,i − (Gu,iΦr +∆u,i) (11)

Defining η[1] = [η1,1; η2,1] ∈ R2, from the equations (8)
and (9), uu = η[1]. The quasi-steady state of uu then can be
found from the equations (11) and (8) as

u
∗
u = η

∗
[1] = Φ2 − (GuΦr +∆u)
= (Ḡu −Gu)Φ0 + (I2 −GuḠ−1u )Πu(u∗u) −∆u.

(12)
For uu ∈ Su, Πu(uu) = uu, and the equation (12) can be
further arranged as

u
∗
u = ḠuG

−1
u ((Ḡu −Gu)Φ0 −∆u). (13)

Define a function Γ(⋅) ∶ R2
→ R2 satisfying the following

relation which can be obtained by replacing u
∗
u with u

∗
u + δ

in the equation (12):

Γ(δ) = (u∗u + δ) − (Ḡu −Gu)Φ0

− (I2 −GuḠ−1u )Πu(u∗u + δ) +∆u

= δ + (GuḠ−1u − I2)(Πu(u∗u + δ) −Πu(u∗u))
(14)

Lemma 2. By confining the thrust 0 < T < 2T̄ , Γ(⋅) belong
to the sector [1 − κ, 1 + κ] with 0 < κ < 1. Also, δ = 02×1 is
the unique solution of Γ(δ) = 02×1.

Proof. With the equation (14) and the property of the satu-
ration function ∥∂Πu(u)/∂u∥ ≤ 1, the following inequality
holds:

∣Γ(δ) − δ∣ ≤ ÂÂÂÂÂGuḠ
−1
u − I2

ÂÂÂÂÂ ∣Πu(u∗u + δ) −Πu(u∗u)∣
≤

ÂÂÂÂÂGuḠ
−1
u − I2

ÂÂÂÂÂ ∣δ∣
(15)

Substituting Gu, Ḡu into the inequality (15),

κ ≔
ÂÂÂÂÂGuḠ

−1
u − I2

ÂÂÂÂÂ =
»»»»»»»»
T − T̄

T̄

»»»»»»»»
< 1.

Therefore, by limiting the thrust of the system to meet 0 < T <

2T̄ , Γ(⋅) belongs to the sector [1− κ, 1+ κ] with 0 < κ < 1.
Also, since ∣Γ(δ)− δ∣≤ κ∣δ∣, δ = 02×1 is the unique solution
for Γ(δ) = 02×1. �

To analyze the fast dynamics in (10b), error variables are
defined as

ξ̃ = ξ − ξ
∗
, η̃ = η − η

∗
, η̃[1] = η[1] − η

∗
[1].

With the error variables, fast dynamics (10b) is organized with
(11) as follows:

εu
˙̃
ξ = Aξ ξ̃ − εuB

+
2 (GuΦ0 +GuḠ

−1
u Πu(η∗[1] + η̃[1]) +∆u)

εu ˙̃η = Aη̃ η̃ −B
+
2 a

u
0Γ(η̃[1]) − εuB+

1 η̇
∗
[1]

(16)
where Aξ = blockdiag{Aξ,1, Aξ,2}, B+

i = I2 ⊗ Bi, Aη̃ =

blockdiag{Aη̃,1, Aη̃,2}, au0 = diag{au1,0, au2,0}, and

Aη̃,i = [0 1
0 −aui,1

] .

Remark 1. The conditions required in Lemma 3 are given in
advance by the following remarks.

1) The origin of the error dynamics of the fully-actuated
subsystem (2) is Lyapunov stable if a stable outer-loop
controller for the nominal dynamics (6) is designed with
an inner-loop controller in III-B.

2) The nominal thrust T̄ is taken such that T̄ and its time-
derivative ˙̄T are bounded.

3) Given that qu, q̇u are bounded, the outer-loop control
law Φ0 is taken such that both Φ0 and Φ̇0 are bounded.
(e.g. considering the position and yaw references which
are bounded and have bounded derivatives, a simple PD
control law Φ0 = Ḡ

−1
u (Kpq̃u+Kd

˙̃qu) and its derivative
Φ̇0 are bounded due to the two earlier remarks and the
fact that the vector field (4) is bounded.)
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Lemma 3. For tf > 0, there exists ε∗u > 0 such that the
solution of (16), initiated from any ξ(0) and η(0), satisfies

»»»»»[ξ̃(t); η̃(t)]
»»»»» ≤ λ1e

−λ2(t/εu) »»»»»[ξ̃(0); η̃(0)]
»»»»» + Ω(εu)

for all t ∈ [0, tf ] and 0 < εu ≤ ε
∗
u, with some positive

constants λ1, λ2 and a class-K function Ω.

Proof. We first analyze the stability of the following sub-
system of (16):

η̃
′
= Aη̃ η̃ +B

+
2 a

u
0{−Γ(η̃[1])},

Y = Ξη̃ = η̃[1],Ξ = I2 ⊗ [1 0]
(17)

where (∗)′ denotes the derivative of (∗) with respect to t/εu.
Defining ai,0, ai,1 to meet ai,0/a2i,1 < 1/2, the origin of (17)
can be proved to be exponentially stable by applying the multi-
variable circle criterion [23, p. 265] thanks to Lemma 2, and
there exists a Lyapunov function Vη̃ = η̃

⊤
Pη̃ η̃ such that V ′

η̃ ≤

−ρ∣η̃∣2 where Pη̃ ∈ R4×4 and ρ ∈ R are a positive definite
matrix and a positive constant, respectively [25]. Also, since
Aξ is Hurwitz, there exists a positive definite matrix Pξ ∈ R4

such that PξAξ +A
⊤
ξ Pξ = −I4.

Now, to derive the inequality in Lemma 3, we examine the
following Lyapunov candidate function:

Vqu = µξ̃
⊤
Pξ ξ̃ + η̃

⊤
Pη̃ η̃. (18)

Then, the derivative of Vqu with respect to t/εu follows the
following inequality:

V
′
qu ≤ −µ∣ξ̃∣

2
−ρ∣η̃∣2+εuµν1ζ1∣ξ̃∣+εuν2ζ2∣η̃∣ (19)

where ν1 = 2∥Pξ∥ , ν2 = 2∥Pη̃∥. We set ζ1 = ∣B+
2 (GuΦ0+

GuḠ
−1
u Πu(η∗[1] + η̃[1]) +∆u)∣, ζ2 = ∣B+

1 η̇
∗
[1]∣ which are all

bounded values by Assumption 1, Remark 1 and the saturation
function. Then, there always exist positive ā1, ā2 such that the
following inequality holds:

V
′
qu < −ā1Vqu + εuā2

√
Vqu . (20)

Finally, employing comparison Lemma [23, pp. 102–103] and
quadratic property of the Lyapunov candidate function Vqu to
(20), one completes the proof of the Lemma 3. �

Now the exponential stability of the boundary-layer system
from Lemma 3 allows us to obtain the reduced system, which
is identical to the nominal dynamics in (7) as follows:

q̈u = Gu(Φ0 + ḠuΠu(u∗u)) +∆u

= GuΦ0 +GuḠ
−1
u Πu(u∗u)) +∆u

= GuΦ0 + ((Ḡu −Gu)Φ0 −∆u) +∆u

= ḠuΦ0

(21)

where the outer-loop control law Φ0 is inserted to the nominal
control input Φ̄r.

Lastly, to show that the reduced system (21) can be ob-
tained in the infinite time interval, we leverage the follow-
ing two facts. First, there exists t1 such that the solution
[qu(t); q̇u(t); Φ0(t)] remains in U for t ∈ [0, t1] since the
set of initial conditions S is contained in U and the vector
field (10a) is bounded by the Assumption 1, Remark 1 and the

saturation function. On the other hand, there exists t2 > 0
such that ∣[qu(t); q̇u(t); Φ0(t)] − [q̄u(t); ˙̄qu(t); Φ̄0(t)]∣ ≤

σ/2 for all 0 ≤ t ≤ t2, because [qu(0); q̇u(0); Φ0(0)] =

[q̄u(0); ˙̄qu(0); Φ̄0(0)] and, again, the vector field of (10a)
is bounded. Finally, let tf = min{t1, t2}. Then, Lemma 3 is
applicable, which yields that ∣[ξ(tf); η(tf)]∣→ 0 as εu → 0.
Since all the assumptions in [22] are satisfied, now Tikhonov’s
theorem can be applied for the time interval [tf ,∞) which
ends the proof of the theorem. �

B. DOB design for the fully-actuated subsystem

Similar to that for the underactuated subsystem, the inner-
loop controller for the fully-actuated subsystem is designed as
follows (i = 1, 2, 3, 4):

q̇
f
i = Af,iq

f
i +Bf,iqf,i, ṗ

f
i = Af,ip

f
i +Bf,iτ2,i

uf,i = p
f
i,1 − Λi(q̇fi,2 − F̄f,i), τ2 = ΛḠfτ0 +Πf(uf)

τ = τ0 + (ΛḠf)−1Πf(uf)
(22)

where qfi = [qfi,1; q
f
i,2] ∈ R2, pfi = [pfi,1; p

f
i,2] ∈ R2, and

Af,i = [ 0 1

−a
f
i,0/ε

2
f −a

f
i,1/εf

] , Bf,i = [ 0

a
f
i,0/ε

2
f
]

with a
f
i,0, afi,1 and εf are positive parameters to be de-

signed. τ0 is the outer-loop control input which is de-
signed based on the nominal dynamics (6), and Λ =

diag{m(1/2)
c , J̄

(1/2)
m , J̄

(1/2)
m , J̄

(1/2)
m } where J̄m is the minimum

value of diagonal terms in JB . Πf(⋅) is another saturation
function similar to Πu(⋅).

Following the same proof procedure as in III-A, the transient
performance recovery of the actual fully-actuated subsystem
(2) to the nominal counterpart (6) can be demonstrated.
Detailed proof can be found in [19].

IV. REFERENCE GENERATION

With the proposed control algorithm (8), (22), it is shown
that an mUAM behaves as a nominal multirotor (6), (7) in
the presence of a disturbance ∆u,∆f which are bounded
and have bounded first derivatives. Therefore, for the case of
pushing a movable structure, by assigning a target position
of the mUAM beyond the contact surface of the structure,
the mUAM is forced to exert more interaction forces to the
structure until the mUAM arrives at that target position to
which the nominal counterpart converges. This mechanism
eventually results in moving the structure; meanwhile, since
the transient performance recovery of the mUAM has been
verified in Theorem 1, the robust stability of the mUAM can
be guaranteed during the entire operation.

Based on this concept, we propose an algorithm to generate
the end-effector position reference for pushing a movable
structure. We relate the mUAM’s end-effector position refer-
ence pe,r ∈ R3 with the velocity of the structure ṗs ∈ R3 such
that, for nonzero ṗs, the penetration level of pe,r into the con-
tact surface is inverse proportional to ṗs. Also, if the structure
is at rest, we gradually increase pe,r, starting from the contact
surface of the structure ps. This increment in the penetration
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Algorithm 1 Reference generation algorithm
Input ∶ penetration level δ, update rate ∆δ

Output ∶ end-effector position reference pe,r
1: if structure at rest then
2: ps, φs ← getStructurePose();
3: δ ← forwardUpdate(δ,∆δ);
4: else
5: δ ← backwardUpdate(δ,∆δ);
6: end
7: pe,r ← referenceUpdate(ps, φs, δ);
8: return pe,r

level would trigger a faster increase in the interaction force by
producing larger values of rolling/pitching motion reference
(depending on force exertion direction), while a decrease in
the penetration level of pe,r prevents generating an excessively
distant reference from the current mUAM’s current position.
For actual implementation, we realize this idea as in Algorithm
1.

If the structure is at rest, the structure’s contact surface
position ps is updated, and the penetrating reference pe,r is
computed by the increased penetration level δ. On the contrary,
if the structure moves, we extract the reference pe,r backward
by decreasing δ. This is to restrict a large deviation of the
reference from the mUAM’s current position. This property is
essential in hardware experiments in that it restrains excessive
rolling/pitching motion reference (> 50 [deg]) which can cause
motor saturation. We acquire the structure’s pose (position
ps and orientation φs ∈ R3) to adjust to the orientation
of the structure, and the structure pose is obtained via an
external motion capture system, which can be substituted by
an onboard camera.

V. RESULTS

A. Experimental setup

For experimental validation, we build an mUAM with a two-
DoF robotic arm composed of a ReadytoSky S500 quadrotor
frame, two ROBOTIS Dynamixel XM430 series servomotors,
two Turnigy LiPo batteries, and four T-MOTOR ALPHA 40A
ESCs, U3 motors, and P12×4 propellers. We harness the
OptiTrack motion capture system (MoCap) for localization of
the mUAM and movable structures. As the onboard computer,
Intel NUC running Robot Operating System (ROS) in Ubuntu
18.04 executes the position control algorithm (i.e. (8) and i = 1
case in (22)) and the reference generation algorithm while the
customized PX4 firmware of v1.11 in Pixhawk 4 runs attitude
control algorithm involving i = 2, 3, 4 cases in (22).

We design outer-loop controllers Φ0 in (8) and τ0 in (22)
as a position PD controller and a cascaded P-PID controller
for attitude and angular rate which are sufficient to satisfy
Assumption 1.2, Remark 1.3, and assumptions on an outer-
loop controller in [19]. To meet Remark 1.2, we set the
nominal thrust T̄ = mcg through which the upper bound
of the total thrust is defined as 2T̄ = 2mcg from Lemma 2.
Since our application does not require motion in zW direction,
considering only a pitching motion in a hovering condition, a

multirotor can reach up to 60 [deg] in the pitch direction,
which we believe suffices in our scenarios. Note that a less
conservative criterion can be obtained by setting T̄ = Td where
Td is the desired thrust command computed directly from the
position controller, but further analysis will be required.

The motors of the robotic arm are each disposed in xB
and yB directions so that the minimal number of actuators
are used to acquire an independent roll and pitch directional
orientation of the end-effector from that of the multirotor,
motivated by the concept in [26]. With these configurations,
to maintain a surface contact with the vertical surface of the
structure, the desired angle of each actuator of the robotic arm
is set to compensate the multirotor’s roll and pitch motion:
θ1,d = −φx, θ2,d = −φy . For yaw directional orientation
matching between the end-effector and the structure’s contact
surface, we set the desired yaw angle to be the yaw angle of
the structure’s contact surface.

Experiments on each class of movable structure, defined
in I, are conducted to validate our proposed framework. As
a structure belonging to the first class of movable structure,
we conduct experiments with a rolling cart, while a real-like
hinged door as in [14] is employed for the second class of
movable structure. For each type of movable structure, we
vary the experimental setting by changing the inertia of the
structure in the mUAM’s perspective: the former by changing
the weight of the structure, and the latter by altering a length of
a lever arm. To first validate the performance of the proposed
controller in a simpler situation where the structure does not
move, we conduct preliminary experiments on interaction with
a static structure, but due to the page limit, they are only
included in the video attachment.

In Figs. 3 – 6, solid lines and dashed lines are respectively
for measurement data and their reference while the dashed
line with a triangle marker in the top figure denotes the data
of the structure’s contact surface. Also, each figure presents
the time history of the horizontal position of the end-effector
in xW , yW direction (pe,x, pe,y , top), Euler angles of the
mUAM (φx, φy, φz , middle), and joint angles of the robotic
arm (θ1, θ2, bottom).

B. Pushing a rolling cart

Experimental results on a relatively low inertia (33 [kg])
and high inertia (42 [kg]) can be found in Figs. 1, 3, 4,
and 7. In both experiments, as can be found in the top
figures of Figs. 3 and 4, the penetrating reference of the
robotic arm’s end-effector (red, dashed line) goes beyond the
position of the structure’s contact surface (red, solid line with
a triangle marker), driving the mUAM to rotate over 30 [deg]
in the pitch direction. In Fig. 3, although the penetrating
reference starts to decrease at 4 [s], the pitch angle reference
continues to increase until the penetrating reference becomes
very small. This suggests that the proposed controller promotes
the solution of the actual system to reach the neighborhood
of that of the nominal system, by producing a larger pitch
angle reference. A similar phenomenon occurs also in Fig. 4
where a slightly higher maximum pitch angle and its reference
are obtained. From the bottom figures of Figs. 3, 4, we can
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Fig. 3. Pushing a rolling cart with a low inertia (33 [kg]).

Fig. 4. Pushing a rolling cart with a high inertia (42 [kg]).

see that the actuators of the robotic arm decently follow the
reference angles through which a surface contact between the
end-effector and the structure can be secured.

C. Pushing a hinged door

Figs. 1, 5, 6, 8 show experimental results of pushing a
hinged door. In contrast to the scenario of pushing a rolling
cart, interaction with the hinged door results in additional
variation in the contact surface orientation. Therefore, to
ensure a steady contact surface orientation matching between
the end-effector and the structure, we update the penetration
level more conservatively (i.e. smaller) by inserting an if
statement between the line number 2 and 3 in Algorithm
1 for deferring the forwardUpdate until the contact surface
orientation matching is obtained. As a result, as in Figs. 5 and
6, only little penetrating reference can be found. However,
thanks to the proposed controller, although it takes longer
time to accumulate the reference pitch angle compared to the
results in Figs. 3, 4 (about 2 [s] in Figs. 3, 4 and over 5
[s] in Figs. 5, 6 to reach 20 [deg] from 0 [deg]), the suitable
accumulation of the reference pitch angle can still be obtained
to move the hinged door. Pushing the hinged door with a
shorter moment arm (10 [cm] shorter) in Fig. 6 requires a

Fig. 5. Pushing a door with a long lever arm length (95 [cm]).

Fig. 6. Pushing a door with a short lever arm length (85 [cm]).

larger force, and the second pitch reference accumulation from
25 [s] to 30 [s] seems to occur due to this fact and other
additional, unintentional friction from the ground.

VI. CONCLUSION

In this paper, we presented a control framework for an
aerial manipulator to push a movable structure. From the
controller in [19], by augmenting the nonlinear DOB also to
the underactuated subsystem, we could guarantee the transient
performance recovery of both the underactuated subsytem
and the fully-actuated subsystem which constitute the overall
mUAM system, given an exogenous joint controller of the
robotic arm. Next, we introduced the algorithm to generate the
end-effector position reference for pushing a movable struc-
ture. Validation of the proposed framework was accomplished
by experiments with a rolling cart and a real-like hinged door.
During the interaction, over 30 [deg] of pitching motion is
produced to push the rolling cart while safe operation can be
maintained even during an interaction with a moving structure.
For future work, we expect to expand the proposed framework
to handle an interaction with an arbitrary structure movable in
any direction in 2-dimensional space.
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Fig. 7. A customized mUAM pushing a rolling cart. Alphabetic order from (a) to (d) indicates the time sequence whose total elapsed time is about 10
seconds.

Fig. 8. A customized mUAM pushing a real-like hinged door. Alphabetic order from (a) to (d) indicates the time sequence whose total elapsed time is about
30 seconds.
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