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Abstract— This study presents a globally defined dynamics
for a conventional multirotor equipped with a single n-DOF
manipulator using modified Lagrangian dynamics. This enables
the reformulation of entire dynamics directly on SO(3) without
exploiting any local coordinates, and thus problems such as
the singularity of Euler angles can be avoided. Since skew-
symmetric property of Coriolis matrix C and inertia matrix
facilitates stability analysis, we propose a method to compute C
which guarantees the skew-symmetric property by considering
C as a summation of two sub matrices. Then, a geometric
tracking controller is designed based on decoupled dynam-
ics applying passive decomposition. The proposed controller
guarantees almost global region of attraction. We validate our
method via consecutive aerial flipping experiments.

I. INTRODUCTION

Aerial manipulator has accomplished challenging tasks by
attaching multi-DOF manipulator to multirotor such as pick
and place [1], bridge inspection [2], interaction with movable
structure [3] and plug-pulling [4]. However, most research on
aerial manipulators, including the above studies, use Euler
angle to describe and control the attitude of systems. This im-
plies that the superior maneuverability of the aerial platform
is not fully exploited and thus the robot may fail to carry out
given missions due to the singularity problem. Furthermore,
singularity of Euler angle limits theoretical developments
for controller design and stability analysis. For instance,
they may not guarantee successful accomplishment of given
missions if attitude is suddenly disturbed. Another problem is
that, since most aerial manipulators have a single manipulator
attached to top or bottom of the platform, performing tasks
on the other side of attached surface is impossible due to
attitude limitation. One may try attaching an extra or a very
long manipulator to enlarge the workspace of platform, but
this is extremely inefficient because the multirotor base is
vulnerable to inertia.

These problems are resolved if aerial manipulator is capa-
ble of aerial flipping or recovering from huge attitude error
even over 90◦. To do so, in this work, we describe attitude
of the platform without employing Euler angle representation
and design a geometric tracking controller which guarantees
a large region of attraction.

A. Related works

Complicated equations of motion for a single general
aerial manipulator platform were derived using the standard
Euler-Legrange equation [5] popular for its effectiveness in
deriving the dynamics of a multibody system. However,
to use the standard Euler-Lagrange equation of motion,

Fig. 1. A sequential image of aerial manipulator changing flight mode
from normal flight to inverted flight through aerial flipping. Arrow direction
describes motion of the platform.

singularity is unavoidable because the attitude of the system
must be described as three scalar variables, i.e., Euler angles.

For bare multirotors that have simpler dynamics of a
single rigid body, geometric tracking controllers have been
extensively developed [6-9]. Still, they cannot be directly
employed for aerial manipulators. Since [6] and [7] only
consider multirotor itself, dynamic effects of manipulators
will harm the stability. The robust geometric controllers in
[8] and [9] can only guarantee the uniform boundedness
of stability at best, even when the model parameters of
attached manipulator are exactly known. In addition, their
assumptions of bounded disturbances limits the applicability
of manipulators.

B. Contributions

Main contributions of this study are summarized as fol-
lows:

• To the best of our knowledge, this is the first attempt to
explicitly reveal globally defined dynamics of an aerial
manipulator using rotation matrices and angular veloci-
ties instead of local description of SO(3). The modified
Lagrangian dynamics [10] allows direct derivation of
the attitude dynamics on SO(3) so that problems of
local coordinates such as singularities can be avoided.

• We propose Coriolis matrix which assures the skew-
symmetric property facilitating stability analysis al-
though a direct use of the Christoffel symbol is re-
stricted because of difference between the modified
Euler-Lagrange equation and the standard one.

• A geometric controller is presented based on decou-
pled dynamics applying passive decomposition. We can
guarantee the almost global exponential stability for



attitude and joint angle dynamics and almost global
exponential attractiveness for complete dynamics. A
real-world experiment of consecutive aerial flipping
demonstrates the above mentioned stability.

C. Notations

Throughout this paper, quantities with subscripts b and i
refer to the quantities of the multirotor base and the i-th link,
respectively. The j-th element of a vector ∗ is denoted by ∗j .
For a matrix A, the i-th row and the j-th column element is
represented as aij with the corresponding lower-case letter.
λM (∗) and λm(∗) stand for the largest and smallest eigen-
value of square matrix ∗, respectively. blkdiag{A,B}
refers to a block diagonal matrix which consists of matrices
A and B. ∥∗∥ indicates a 2-norm of a vector or induced 2-
norm of a matrix. The hatmap (·)∧ : R3 → so(3) is defined
as the skew-symmetric matrix representation of the vector
cross product. The vee map ∨ : so(3) → R3 is the inverse
of the hat map. In×n and 0n×m denote n× n identity matrix
and n×m zero matrix, respectively.

II. DYNAMICS REFORMULATION

In this section, dynamics of a conventional multirotor
equipped with a n-DOF robotic manipulator is reformulated
using the modified Lagrangian dynamics [10] which enables
direct formulation of the attitude dynamics on SO(3) without
exploiting Euler angle representation.

A. Kinematics

Let us define the reference frame and the body frame as
OI and OB , respectively, using North-West-Up convention.
The center of mass position of the multirotor base expressed
in OI , rotation matrix from OB to OI , and joint angles are
represented as p ∈ R3, R ∈ SO(3) and θ ∈ Rn, respectively.
pBi ∈ R3 denotes the center of mass position of the i-th link
expressed in OB . Let pIi ∈ R3 indicate the center of mass
position of the i-th link expressed in OI , ω ∈ R3 refer to
body angular velocity expressed in OB , ωii ∈ R3 represent
angular velocity of the i-th link expressed in the i-th link
frame. Ji,t ∈ R3×n and Ji,r ∈ R3×n are Jacobian matrices.
RBi ∈ SO(3) is the rotation matrix from the i-th link frame to
OB . Defining the generalized velocity as q̇ = [ṗ⊤ ω⊤ θ̇⊤]⊤,
the following matrix form simplifies the kinematic relations.

ṗ = [I3×3 03×3 03×n]q̇ =Mb,tq̇ (1)
ω = [03×3 I3×3 03×n]q̇ =Mb,r q̇ (2)

ṗIi = [I3×3 −RpBi
∧
RJi,t]q̇ =Mi,tq̇ (3)

ωii = RBi
⊤
[03×3 I3×3 Ji,r]q̇ =Mi,r q̇ (4)

B. Modified Euler-Lagrangian Approach

Configuration of the entire system can be uniquely deter-
mined by p,R and θ Let the Lagrangian of the system be L =
T −U where T and U refer to the sum of the total kinetic and
potential energy of the system, respectively. Then, defining
action integral and considering infinitesimal variations, one

Fig. 2. Overall platform and frame description

can reach the following Modified Euler-Lagrange equations
of motion. Detailed derivation for attitude dynamics can be
found in [10].

d
dt

(
∂L
∂ṗ

)
− ∂L

∂p = τp (5)

d
dt

(
∂L
∂ω

)
+ ω∧ ∂L

∂ω +
∑3
l=1 rl

∧ ∂L
∂rl

= τR (6)

d
dt

(
∂L
∂θ̇

)
− ∂L

∂θ = τθ (7)

where τp, τR and τθ indicate generalized forces, and r⊤l is
the l-th row of R.

The total kinetic energy is considered as T = 1
2 q̇

⊤Mq̇
using the inertia matrix M ∈ R6+n×6+n computed as the
following equation

M(R, θ) =M⊤
b,tmbMb,t +M⊤

b,rIbMb,r +∑n
i=1M

⊤
i,tmiMi,t +M⊤

i,rIiMi,r (8)

where m and I indicate the mass and moment of inertia
matrix, respectively. The potential energy U of the system is

U = mbge
⊤
3 p+

∑n
i=1mige

⊤
3 (p+RpBi ).

By substituting T and U calculated above into (5)-(7), one
can obtain the following standard matrix form of equations
of motion

Mq̈ + Cq̇ +G = τ (9)

where C ∈ R6+n×6+n, G ∈ R6+n and τ ∈ R6+n in-
dicate the Coriolis-centrifugal matrix, gravity vector and
generalized force vector, respectively. For the conventional
multirotor platform, a control input can be chosen as u =
[T u⊤b u⊤θ ]

⊤ where T ∈ R1, ub ∈ R3, and uθ ∈ Rn
are net thrust along body z-axis, body torque expressed in
OB , and joint torques, respectively. Consequently, deploying
the virtual work principle, generalized force τ in (9) is
determined as τ = [(TRe3)

⊤ u⊤b u⊤θ ]
⊤.

C. Skew-symmetricity of Ṁ − 2C

For the term Cq̇ from (9), it is well-known that the
matrix representation of C is not unique. Furthermore, ex-
isting studies on designing controllers and proving stability
for multi-body mechanical systems have widely harnessed
the above skew-symmetricity [5], [11], [12]. This implies
that, to apply the similar controller design procedure used
in previous studies for the proposed dynamics, the skew-
symmetricity of Ṁ − 2C should be verified. However,
unlike [5], it is impossible to directly utilize the Christoffel
symbols to calculate C such that the skew-symmetricity of



Ṁ−2C holds, since (6) is dissimilar from the standard Euler-
Lagrange equation. Thus, this subsection provides a method
to compute C which guarantees the skew-symmetricity of
Ṁ − 2C.

First, the total kinetic energy can be rewritten as

T = 1
2

∑6+n
i=1

∑6+n
j=1 mij q̇iq̇j . (10)

Since the potential energy does not depend on q̇, the time
derivative terms of (5)-(7) become

d

dt

(
∂L
∂q̇k

)
=

d

dt

6+n∑
j=1

mkj q̇j =

6+n∑
j=1

(
mkj q̈j +

dmkj

dt
q̇j

)
.

The inertia matrix M is also irrelevant with q̇. Accordingly,
the last term of the above equation can be replaced with

6+n∑
j=1

dmkj

dt q̇j =

6+n∑
i=1

6+n∑
j=1

1
2

(
∂mkj

∂qi
+ ∂mki

∂qj

)
q̇iq̇j

where the following terms are additionally defined using Ṙ =
Rω∧ for the case of i, j = 4, 5, 6.[

∂mkj

∂q4

∂mkj

∂q5

∂mkj

∂q6

]⊤
:= −

3∑
l=1

rl
∧ ∂mkj

∂rl
(11)

Here, note that, the derivative form is adopted only for the
notational consistency.

For further development, let us separately consider two
cases: 1) k = 4, 5, 6 and 2) k ̸= 4, 5, 6. The former one
corresponds to (6). Thus, substituting (10) into the third term
of (6) yields

3∑
l=1

rl
∧ ∂L
∂rl

= 1
2

6+n∑
i=1

6+n∑
j=1

3∑
l=1

rl
∧ ∂mij

∂rl
q̇iq̇j −

3∑
l=1

rl
∧ ∂U
∂rl
.

(12)

Note that (11) is included where k is replaced with i in the
first term of the right hand side of (12). For the case of
k ̸= 4, 5, 6, this accords with (5) and (7) which are identical
to the standard Euler-Lagrange equation. This then implies
we can calculate C that guarantees the skew-symmetricity
of Ṁ − 2C by dividing into the sub-matrices C = C1 +C2:

C1kj
=

6+n∑
i=1

1

2

(
∂mkj

∂qi
+
∂mki

∂qj
− ∂mij

∂qk

)
q̇i

C2 =

03×3 03×3 03×n
03×3 −

(
∂L
∂ω

)∧
03×n

03×3 03×3 03×n

 (13)

In the derivation, the vector cross product identity is used.
One may notice that Ṁ − C1 is skew-symmetric since
C1 exhibits the structure similar to the Christoffel symbol.
Hence, the skew-symmetricity of Ṁ − 2C is guaranteed
because Ṁ−2C1 is skew-symmetric and C2 itself is a skew-
symmetric matrix.

Lastly, G in (9) can be simply calculated from (5)-(7)

G =

 mcge3∑n
i=1mig

(
pBi

)∧
R⊤e3∑n

i=1migJ
⊤
i,tR

⊤e3

 (14)

where mc := mb +
∑n
i=1mi.

D. Passive Decomposition

To facilitate the controller design, passive decomposition
is applied to decouple the translational dynamics from (9).
Similar to [13], let us first define a new coordinate ν ∈ R6+n

such that q̇ = S̃ν where

S̃ =

[
I3×3 −M−1

t Mtr

03+n×3 I3+n×3+n

]
, M =

[
Mt Mtr

M⊤
tr Mr

]
.

Denoting the center of mass position of the entire system
as pc and further defining ṙ := [ω⊤ θ̇⊤]⊤ ∈ R3+n, (1)-(4)
and (8) ensures ṗc = ṗ − Sṙ where S = −M−1

t Mtr. This
implies that the new coordinate is ν = [ṗ⊤c ṙ⊤]⊤. Hence,
substituting q̇ with S̃ν and pre-multiplying S̃⊤ to (9), the
equation of motion is turned into the following form

M̃ν̇ + C̃ν + G̃ = S̃τ (15)

where M̃ = S̃⊤MS̃, C̃ = S̃⊤(M ˙̃S + CS̃), and G̃ = S̃⊤G.
The skew-symmetricity of ˙̃M−2C̃ is also assured by simple
calculation. Meanwhile, from (13), the top three rows of
C can be rewritten as Ṁtr ṙ because M does not depend
on p and Mt = mcI3×3. Thus, the extracted translational
dynamics from (9) is Mtp̈+Mtr r̈+Ṁtr ṙ+mcge3 = TRe3.
By substituting ṗ with ṗc + Sṙ, this can be rewritten as

mcp̈c +mcge3 = TRe3 (16)

Since the gravity effect term in (15) S⊤Gp+Gr is cancelled
out due to (14) with elements of Mt and Mtr, the remaining
attitude and joint angle dynamics can be taken as follows:

Ṙ = Rω∧

ME r̈ + CE ṙ − C⊤
LE ṗc =

[
ub
uθ

]
+ S⊤TRe3 (17)

where definitions of ME , CE , and CLE are same with [13].
The skew-symmetricity of ṀE−2CE also holds, and ME is
the symmetric and positive definite inertia matrix [14]. The
difference between (17) and the decomposed dynamics from
[13] is that CLE is not zero matrix any more. This is because
when C is calculated via (13), ṗ is included. This term can
be vanished if SO(3) is parametrized by ZYX Euler angles
(R3) but singularity arises.

III. CONTROLLER DESIGN

Due to underactuatedness of the platform, it is impossible
to follow arbitrarily assigned desired position and attitude
of the multirotor base simultaneously. This study presents a
control law to follow a given trajectory of desired position,
body x-axis and joint angles.

A. Tracking Controller Design

Suppose that a smooth trajectory pcd(t), B1d(t), and θd(t)
is given where pcd(t), B1d(t), and θd(t) are the desired
center of mass position of the aerial manipulator, the desired
body x-axis of the multirotor base which corresponds to the
yaw angle, and the desired joint angles, respectively. Then,
error variables for the position and joint angle can be selected



as ep = pc − pcd and eθ = θ − θd. Attitude error function
and error variables are chosen as [6]:

Ψ(R,Rd) =
1
2 tr[I3×3 −R⊤

d R]

eR = 1
2 (R

⊤
d R−R⊤Rd)

∨, eω = ω −R⊤Rdωd

where Rd is the desired attitude. The desired attitude is
selected as Rd = [b1d b3d × b1d b3d ]. Here, the given B1d

is slightly modified to b1d by Gram-Schmidt orthonormaliza-
tion with repect to b3d calculated from the following equation

b3d =
−Kp0ep −Kp1 ėp +mcge3 +mcp̈cd

∥−Kp0ep −Kp1 ėp +mcge3 +mcp̈cd∥
(18)

where Kp0 and Kp1 are positive diagonal gain matrices.
Assumption 1: The denominator of (18) and ∥B1d × b3d∥

are not zero for all t ≥ 0.
Assumption 2: p̈cd(t) is uniformly bounded, and thus

there exists a positive constant BT such that ∥mcge3 +
mcp̈cd∥ ≤ BT .

Assumption 3: There exist positive constants Ml and Mu

such that 0 < Ml ≤ ∥ME∥ ≤ Mu < ∞. This assumption
has been widely adopted for many studies which deal with
serially connected multi-body system. Once this assumption
holds, there also exist positive constants Mi,l and Mi,u such
that 0 < Mi,l ≤ ∥M−1

E ∥ ≤Mi,u <∞.
To follow the trajectory pcd , b1d and θd, the control inputs

are chosen as follows:

T = (−Kp0ep −Kp1 ėp +mcge3 +mcp̈cd)
⊤Re3 (19)

ub,θ =ME

[
−ω∧R⊤Rdωd +R⊤Rdω̇d

θ̈d

]
+ CE

[
R⊤Rdωd

θ̇d

]
− S⊤TRe3 − C⊤

LE ṗc +

[
−KReR −Kωeω
−Kθ0eθ −Kθ1 ėθ

]
(20)

where ub,θ = [u⊤b u⊤θ ]
⊤. KR,Kω,Kθ0 and Kθ1 are all

positive diagonal gain matrices. Therefore, the closed-loop
error dynamics are

mcëp = −Kp0ep −Kp1 ėp + ∥∆∥{(b⊤3db3)b3 − b3d}

ME ër = −CE ėr +
[
−KReR −Kωeω
−Kθ0eθ −Kθ1 ėθ

]
where ėr := [e⊤ω ė⊤θ ]

⊤, ∆ := −Kp0ep −Kp1 ėp +mcge3 +
mcp̈cd and b3 = Re3, respectively.

B. Stability Analysis

The stability analysis is devided into three steps: 1) almost
global exponential stability of the attitude and joint angle
error dynamics, 2) local exponential stability of the complete
system, and 3) almost global exponential attractiveness of
complete system. All of the geometric properties used to
prove propositions are summarized in [15].

Proposition 1: (Almost global exponential stability of at-
titude and joint angle error dynamics) The zero equilibrium
of ėr, eR, and eθ is exponentially stable. Moreover, the
error function Ψ(R(t), Rd(t)) decreases exponentially with
the following region of attraction:

Ψ(R(0), Rd(0)) < 2

λM (ME(0))∥ėr(0)∥2 + λM (Kθ0)∥eθ(0)∥2 <
2λm(KR)(2−Ψ(R(0), Rd(0)))

(21)

Proof: Consider a positive definite function V ′
1 as

V ′
1 = 1

2 ė
⊤
r ME ėr + λm(KR)Ψ(R,Rd) +

1
2e

⊤
θ Kθ0eθ. (22)

Since d
dtR

⊤
d R = R⊤

d Reω
∧ and tr(R⊤

d Reω
∧) =

tr(eω
∧eR

∧) = −2e⊤Reω , the time derivative of (22) is
bounded by

V̇ ′
1 ≤ −e⊤ωKωeω − ė⊤θ Kθ1 ėθ ≤ 0.

In the derivation, the skew-symmetricity of ṀE − 2CE is
used. This implies that V ′

1(t) ≤ V ′
1(0) holds for any t ≥ 0.

With (21), the following inequality is satisfied.

λm(KR)Ψ(R(t), Rd(t)) ≤ V ′
1(t) ≤ V ′

1(0) < 2λm(KR)

Thus, there exists a positive constant ψ1 such that
Ψ(R,Rd) ≤ ψ1 < 2 for any t ≥ 0. Furthermore, the
following inequality holds [15].

1
2∥eR∥

2 ≤ Ψ(R,Rd) ≤ 1
2−ψ1

∥eR∥2 (23)

Now, for a positive constant α1, let a lyapunov candidate
function for the attitude and joint angle error dynamics V1
be

V1 = V ′
1 + α1[e

⊤
R e⊤θ ] ėr. (24)

From (23) and Assumption 3, V1 is bounded by z⊤1 Plz1 ≤
V1 ≤ z⊤1 Puz1 where z1 = [∥eR∥, ∥eω∥, ∥eθ∥, ∥ėθ∥]⊤ and

Pl =
1

2


λm(KR) −α1 0 −α1

−α1 Ml −α1 0
0 −α1 λm(Kθ) −α1

−α1 0 −α1 Ml



Pu =
1

2


2λm(KR)

2−ψ1
α1 0 α1

α1 Mu α1 0
0 α1 λM (Kθ) α1

α1 0 α1 Mu

 (25)

The time derivative of (24) is upper bounded by

V̇1 ≤− e⊤ωKweω − ė⊤θ Kθ1 ėθ + α1ė
⊤
Reω + α1∥ėθ∥2+

α1[e
⊤
R e⊤θ ]M

−1
E

(
−
[
KReR
Kθ0eθ

]
−N

[
eω
ėθ

])
(26)

where N = CE + blkdiag{KωI3×3, Kθ1I3×3}. For the
third term above, as per [6], ∥ėR∥ ≤ ∥eω∥ holds. Thus, (26)
is turned into the following inequality.

V̇1 ≤ −z⊤1 Pdz1 (27)

Pd =


α1p11 −α1p12 0 −α1p12
−α1p12 p13 − α1 −α1p12 0

0 −α1p12 α1p11 −α1p12
−α1p12 0 −α1p12 p14 − α1


where p11 = min(λm(KR), λm(Kθ0))/Mu, p12 =
CuMi,u + max(λM (Kω), λM (Kθ1))Mi,u, p13 = λm(Kω)
and p14 = λm(Kθ1) are all positive constants. Here, Cu is
a positive constant such that ∥CE∥ ≤ Cu.

To derive further, positive definiteness of Pl, Pu and Pd is
required. Through simple computation of checking positive



definiteness of the matrices, a positive constant α1 always
exists for any arbitrarily large Cu. Thus, with the positive-
definite matrices, below inequality holds.

λm(Pl)∥z1∥2 ≤ V1 ≤ λM (Pu)∥z1∥2

V̇1 ≤ −λm(Pd)∥z1∥2 ≤ − λm(Pd)
λM (Pu)

V1

This leads V1(t) ≤ V1(0)e
−β1t where β1 = λm(Pd)

λM (Pu)
.

Therefore, we can conclude that the zero equilibrium of ėr,
eR, and eθ is exponentially stable. Furthermore, from (23)
and the above bounds of V1, one can induce the exponential
decrease of Ψ(R,Rd) as the following:

λm(Pl)(2− ψ1)Ψ(R,Rd) ≤ λm(Pl)∥eR∥2

≤ V1(t) ≤ V1(0)e
−β1t

This completes the proof.
Remark 1: This proposition guarantees the exponential

stability unless Rd is exactly rotated 180◦ with respect to
R for some axis. Also the larger KR is chosen, the larger
the region of attraction (21) becomes.

Proposition 2: (Local exponential stability of the com-
plete system) The zero equilibrium of ep, ėp, ėr, eR, and eθ
is exponentially stable. The region of attraction is as follows:

Ψ(R(0), Rd(0)) < 1 (28)

λM (ME(0))∥ėr(0)∥2 + λM (Kθ0)∥eθ(0)∥2 <
2λm(KR)(1−Ψ(R(0), Rd(0)))

(29)

Proof: (28) and (29) satisfy the conditions for Proposi-
tion 1. This implies that we can directly utilize the result and
analysis of it. Thus, there exists a positive constant ψ2 such
that Ψ(R,Rd) ≤ ψ2 < 1 for any t ≥ 0. For the quantity
∥(b⊤3db3)b3 − b3d∥, the following inequality holds [15].

∥(b⊤3db3)b3 − b3d∥ ≤ ∥eR∥ ≤ ζ :=
√
ψ2(2− ψ2) < 1 (30)

For a negative constant α2, consider a function V ′
2 as

V ′
2 = 1

2 ė
⊤
pmcėp +

1
2e

⊤
p Kp0ep + α2e

⊤
p ėp.

Then, the time derivative of V ′
2 is upper bounded by

V̇ ′
2 ≤ −(λm(Kp1)− α2)∥ėp∥2 − α2m

−1
c λm(Kp0)∥ep∥2

+ α2m
−1
c λM (Kp1)∥ep∥∥ėp∥+ (∥ėp∥+ α2m

−1
c ∥ep∥)Ξ

where Ξ = ∥∆∥{(b⊤3db3)b3−b3d}. Thanks to Assumption 2
and (30), the following inequality is induced from the above
V̇ ′
2 :

V̇ ′
2 ≤α2s21∥ep∥2 + (s24 + α2)∥ėp∥2 + (α2s22 + s23)∥ep∥

× ∥ėp∥+BT ∥ėp∥∥eR∥+ α2m
−1
c BT ∥ep∥∥eR∥ (31)

where s21 = m−1
c (λM (Kp0)ζ − λm(Kp0)), s22 =

m−1
c λM (Kp1)(1 + ζ), s23 = λM (Kp0)ζ and s24 =

λM (Kp1)ζ − λm(Kp1), respectively. These are all positive
with ζ > max(

λm(Kp0 )

λM (Kp0
) ,
λm(Kp1 )

λM (Kp1
) ). If all elements of each

gain matrix are the same, this proposition could be proved
in the same manner with [15].

Now, let a Lyapunov candidate function for the complete
dynamics be V2 = V1 + V ′

2 . From (27) and (31), the time
derivative of V2 can be represented as follows:

V̇2 ≤ −z⊤1 Pdz1 + z⊤2 S1z1 − z⊤2 S2z2 = −z⊤Sz

z =

[
z1
z2

]
, z2 =

[
∥ep∥
∥ėp∥

]
, S =

[
Pd − 1

2S1

− 1
2S

⊤
1 S2

]
,

S2 = −
[

α2s21 α2s22 + s23
α2s22 + s23 s24 + α2

]
, S⊤

1 =

[
α2s11 01×3

s12 01×3

]
where s11 = m−1

c BT , and s12 = BT , respectively. In the
above inequality, Pd is already positive-definite. Then, by
Schur’s complement theorem, S is positive-definite if and
only if S2− 1

4S
⊤
1 P

−1
d S1 is positive-definite. Also, V2 can be

rewritten as the following bounded inequality.

z⊤1 Plz1 + z⊤2 Qlz2 ≤ V2 ≤ z⊤1 P
′
uz1 + z⊤2 Quz2 (32)

Ql =
1

2

[
λM (Kp0) −α2

−α2 mc

]
, Qu =

1

2

[
λM (Kp0) α2

α2 mc

]
where P ′

u is identical to (25) except for the first diagonal
element replaced with 2λm(KR)

2−ψ2
.

Hence, similar to the Proposition 1, there exists α∗
1 such

that, for each 0 < α1 < α∗
1, Pd, Pl, and P ′

u become
positive definite. Concurrently, there exists α∗

2 such that, for
each α∗

2 < α2 < 0, positive-definiteness of Ql, Qu and S
is guaranteed. Here, S is positive definite if the range of
α2 such that λm(Pd) >

∥S1∥2

4λm(S2)
is found. Now, defining

positive definite matrices Ru := blkdiag{Qu, P ′
u} and

Rl := blkdiag{Ql, P ′
l }, (32) can be reformulated into

z⊤Rlz ≤ V2 ≤ z⊤Ruz, and the exponential stability of the
complete dynamics is shown as V2(t) ≤ V2(0)e

−β2t, β2 =
λm(S)
λM (Ru)

.
Remark 2: Proposition 2 only considers the case when

initial attitude error is less than 90◦. If (28) is not satisfied,
the direction of body z-axis where the net thrust is generated
faces the opposite direction to ep and thus the monotoni-
cally exponential decrease of translational error may not be
guaranteed. However, even though the initial condition does
not meet (28), it will be eventually satisfied in a finite time
t∗ > 0 by Proposition 1 and all error starts to decrease
exponentially if ∥ep∥ and ∥ėp∥ are bounded during attitude
recovery. Hence, the almost global exponential attractiveness
for the complete system can be simply proved by showing
the boundedness of ∥ep∥ and ∥ėp∥ for any finite time t∗.

Proposition 3: (Almost global exponential attractiveness
of the complete system) Suppose that the initial condition
satisfies

1 ≤ Ψ(R(0), Rd(0)) < 2

λM (ME(0))∥ėr(0)∥2+λM (Kθ0)∥eθ(0)∥2 <
2λm(KR)(2−Ψ(R(0), Rd(0)))

Then, there exist t∗ such that the zero equilibrium of ep, ėp,
eR, eθ and ėr is exponentially stable for t > t∗ > 0. Also,
∥ep∥ and ∥ėp∥ are bounded in the time interval 0 ≤ t ≤ t∗.

Proof: Since the proof is similar to [15] the procedure
is omitted due to page limit.



Remark 3: This proposition states that, even for huge
initial attitude error, the error is always finite during the
transient attitude recovery phase. Also, the error variables for
complete system enter the region of attraction for Proposition
2 and eventually exponentially decrease.

IV. EXPERIMENTAL RESULT

A. Experimental setup

The aerial manipulator is built with a single 2-DOF
manipulator attatched hexarotor. TAROT S550 hexacopter
frame is used as the multirotor base. Since servomotors
have to be commanded to generate joint torques from the
controller, we adopted two ROBOTIS Dynamixel XM-430
series servomotors which enable the current control mode.
Because the net thrust calculated from (19) can be neg-
ative, we used six pairs of APC 9×4.5R propellers and
KDE2315XF-965 BLDC motors and two XRotor Micro 40A
6S 4in1 ESCs for bidirectional thrust generating system.
For an onboard computer to calculate control inputs, Intel
NUC running Robot Operating System (ROS) in Ubuntu
18.04 is mounted. Calculated thrust and body torques are
tossed to Pixhawk 4 which runs appropriately customized
PX4 firmware for bidirectional setup to convert control inputs
to thrusts for each rotor. Here, thrust and body torques are
normalized with respect to the maximum thrust and torque
values respectively. Computed joint torques are commanded
to servomotors after converted to corresponding currents via
the torque and current relationship. Optitrack motion capture
system is used for multirotor base localization.

B. Aerial flipping

To validate the proposed method, two successive aerial
flipping is performed while the desired joint angles are
stationary. The aerial flipping command can be given simply
changing the sign of desired body z-axis (18). In experiment,
I gain is slightly added to compensate the real-time battery
consumption and error in the model parameter identification.

Figs. 3 and 4 show the result of two successive aerial
flipping. Shaded areas in both figures indicate the inverted
flight phase. This experiment validates the almost global at-
tractiveness of the proposed controller. From fig. 3, although
the initial attitude error is almost 180◦ for each flip, the
exponential decrease of Ψ is observed. This coincides with
Proposition 1. Meanwhile, the initial increase of ∥ep∥ but
boundedness can be seen. As anticipated, this is because
the initial condition is out of the region of attraction of
Proposition 2. However, the translational error eventually
decreases exponentially by Proposition 3. Fig. 4 presents
control input history. When the flight mode is changed from
normal flight to inverted flight and vice versa, the sign of
thrust automatically changes in order to hover in free space.

V. CONCLUSIONS

This article presents the reformulated dynamics of a con-
ventional multirotor equipped with n-DOF robotic manip-
ulator using modified Lagrangian dynamics. Direct deriva-
tion of the attitude dynamics on SO(3) is enabled without

Fig. 3. Time history of state variables. From the top, each plot describes
the center of mass position, attitude and joint angles, respectively. Solid line
and dashed line indicate actual and desired value, respectively.

Fig. 4. Time history of control inputs

using local coordinate such as euler angle representation.
Since the newly derived Lagrangian dynamics differs from
standard one, we propose a method to compute the Coriolis
matrix which guarantees the skew-symmetric property with
the inertia matrix. Furthermore, passive decomposition into
translational dynamics and remaining attitude and joint angle
dynamics is applied to facilitate the controller design and
stability analysis. With the decoupled dynamics, a geometric
tracking controller is designed which guarantees almost
global region of attraction. We successfully demonstrated the
proposed method through real experiments of consecutive
aerial flipping. Thanks to the general description of this
paper, designing a model-free robust controller based on the
proposed globally defined dynamics is considered as future
work.
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