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Abstract— This study presents a robust integral of the
sign of the error (RISE)-based controller for an aerial ma-
nipulator consisting of a multi-rotor and a robotic arm
which guarantees tracking error convergence to zero in the
presence of uncertainties. To rigorously address underac-
tuatedness issue, the system dynamics is decomposed into
the two subsystems for which a robust controller is derived.
As an intermediate result, if there exists no uncertainty, we
show that the nominal closed-loop system with the pro-
posed nominal controller is asymptotically stable without
assuming that the attitude error term in the underactuated
part is zero by cascaded system analysis tool. Then, a
robust controller combining a nominal controller and a
RISE controller is proposed and applied to both subsys-
tems. Tracking error convergence is strictly proved through
Lyapunov-based stability analysis. The performance of the
controller is demonstrated in simulation with comparative
studies where the proposed controller outperforms the
other compared controllers in error convergence.

Index Terms— Robotics, Robust control, Control applica-
tions, Aerial manipulator

I. INTRODUCTION

AN aerial manipulator, which is a robotic platform com-
bining a multi-rotor and a robotic arm, has been a con-

sistently studied research topic in the recent decade [1]. The
combination of a multi-rotor and a robotic arm innately allows
the aerial manipulator to perform various interactive tasks, by
exploiting hovering ability and high mobility of a multi-rotor
and dexterity of a robotic arm. Various demonstrations have
been conducted including door opening [2], plug pulling [3],
pick-and-place [4], and contact-based inspection [5].

Despite the aerial manipulator’s vast potential, controller
design has been remaining a challenging problem due to its
highly complex dynamics. In contrast to a conventional multi-
rotor, which is in general modeled as a single rigid body,
a coupling effect from the robotic arm’s motion should be
suitably addressed which would otherwise incur instability
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[6]. To handle such issue, [7] proposes a stabilizing controller
based on the dynamics described in the body coordinate, and
asymptotic stability is proved using the singular perturbation
theory. To handle the complexity of the aerial manipula-
tor’s dynamics, [8–10] introduce coordinate transformations
through which dynamics is decoupled, and motion controllers
based on such decoupled dynamics are derived. These con-
trollers could guarantee asymptotic stability (AS), but they all
assume no uncertainty nor disturbance in the model.

To consider uncertainty which prevails in actual experiments
especially when interacting with an environment, various
robust/adaptive controllers have been proposed. Existing ro-
bust/adaptive controllers can be classified into two categories
by whether the motion of the robotic arm is regarded as
disturbance or not. The first approach designs a robust/adaptive
controller for a multi-rotor only, and it is more convenient than
the other approach to design a controller thanks to the reduced
complexity of the system model. [11, 12] utilize the multi-
rotor dynamics but with additional modeling of the robotic
arm’s effect as a CoM shift. To guarantee boundedness of the
tracking error, sliding mode control and disturbance observer
are applied in [11] while [12] proposes an H∞ controller.
[13, 14] use the CoM position of the aerial manipulator instead
of the multi-rotor and apply a nonlinear disturbance observer
by which transient performance recovery against various un-
certainties is verified using a coordinate transformation and the
singular perturbation theory. Assuming that the inertia of the
robotic arm is negligible, [15, 16] consider only the dynamics
of the multi-rotor and the end-effector and provide a nonlinear
controller which guarantees boundedness of the tracking error.

On the other hand, the second approach exploits the full
knowledge of the coupled dynamics between the multi-rotor
and the robotic arm and therefore, the coupling term between
the two needs no longer to be deemed as disturbance. Thanks
to this property, it is a merit of the second approach that
better performance can be expected by virtue of the reduced
source of disturbance. [17] designs a robust controller based
on IDA-PBC method, but with a restriction that only a 2-
dimensional quadrotor model with an n-link robotic arm is
considered. [18] models the aerial manipulator using recursive
Newton-Euler formulation, and designs an adaptive controller
for attitude, altitude, and joint angle tracking, but without
position tracking controller. [19, 20] adopt adaptive sliding
mode controller and show that the system is asymptotically
stable under the assumption that external disturbance is suf-
ficiently slowly varying. [21] designs a cascade controller



which consists of feedback linearization and H∞ control and
shows robustness against various types of uncertainties, but
without rigorous stability analysis. [22] applies a finite-time
geometric control with adaptive law which shows finite-time
convergence to a small region around the origin and robustness
against external disturbance. A combination of prescribed
performance control and disturbance observer is presented in
[23] where model/parametric uncertainties are considered as a
lumped disturbance term in the model.

As discussed above, robust/adaptive control for an aerial
manipulator has been an active research topic in both robotics
and control communities. Among various robust/adaptive con-
trol methods, this paper aims to develop a robust integral
of the sign of the error (RISE) feedback controller for the
full aerial manipulator system. The RISE control, which was
first proposed in [24], is a robust control technique which can
guarantee asymptotic stability or exponential stability even if
there exist model uncertainties and disturbance [25]. Since
the controller could guarantee convergence of the tracking
error to zero which was not possible in other previously
mentioned controllers applied to the aerial manipulator, the
RISE controller is expected to have strength in accurate
manipulation. Despite such strength, to the best of the authors’
knowledge, the RISE control has not been applied to an aerial
manipulator as opposed to its employment in various other
aerial robots [26–29].

To address underactuatedness1 of the aerial manipulator,
we first decompose the aerial manipulator dynamics into
the underactuated and fully actuated subsystems with coordi-
nate transformation. Then, a nominal controller guaranteeing
asymptotic stability of the nominal system is constructed and
augmented to a robust controller based on the RISE method.
Tracking error convergence to zero is verified with strict
Lyapunov-based stability analysis where exponential stability
is proved. Comparisons with other robust controllers, adaptive
sliding mode control [20] and disturbance observer-based
control [14], are also conducted in simulation to validate
performance of the proposed controller.

The contribution of this research can be summarized as
follows:

• reformulation of the full dynamics of the aerial manipu-
lator for the ease of controller design and analysis

• asymptotic stability analysis with thorough consideration
of the underactuatedness of the nominal closed-loop
aerial manipulator system

• first approach to apply RISE control to the aerial manip-
ulator guaranteeing tracking error convergence to zero in
the presence of uncertainties

A. Notations
In this work, we use In, diag{a, b}, blkdiag{A,B}

to denote an identity matrix in Rn×n, a diagonal matrix
composed of scalars a, b, and a block diagonal matrix com-
posed of matrices A and B. For a vector v and a diagonal

1This is a mechanical property of a multi-rotor where all 6 degrees of
freedom cannot be independently controlled. This property can be observed
from the fact that a multi-rotor cannot translate in x,y directions without
rolling or pitching.

Fig. 1. Aerial manipulator prototype. Note that we do not assume a
particular robotic arm configuration in dynamic modeling and control
design.

matrix D, vi denotes the ith element of v, and Di is the ith

diagonal element of D. Also, for a column vector a and b,
[a; b] := [a⊤ b⊤]⊤. Lastly, c(·), s(·), and t(·) denote shorthands
for cos(·), sin(·), and tan(·), respectively.

II. DYNAMIC MODEL

Assuming a multirotor-based aerial manipulator as in Fig.
1, a control input is defined as u = [T ; τϕ; τθ] ∈ R4+nθ where
T ∈ R, τϕ ∈ R3, and τθ ∈ Rnθ are multirotor’s total thrust
in body z axis, multirotor’s torque in body coordinate, and
joint torques of the robotic manipulator. We take a generalized
coordinate as q = [p;ϕ; θ] ∈ R6+nθ , where p ∈ R3, ϕ ∈ R3,
and θ ∈ Rnθ are CoM position, ZYX Euler angles of a
multirotor base, and joint angles of a robotic arm, respectively.
nθ denotes the number of revolute joints in the robotic
arm. Regarding the aerial manipulator as a serially connected
linkage where the multirotor base is considered as the 0-th
link, mass and moment of inertia of the j-th link about their
CoM expressed in their body frame are denoted as mj and Ij .
For notational simplicity, we separately define configuration
related to rotational motions as r = [ϕ; θ], and CoM position
of the aerial manipulator as pc ∈ R3.

By solving Euler-Lagrange equation, equations of motion
(EoM) can be written as

Mq̈ + Cq̇ +G = Bu+∆

M =

[
Mt Mtr

M⊤
tr Mr

]
(1)

where M,C ∈ R(6+nθ)×(6+nθ), G ∈ R6+nθ , B ∈
R(6+nθ)×(4+nθ) are mass matrix, Coriolis-centrifugal matrix,
gravity vector, and input matrix, respectively. Particularly,
input matrix can be derived as B = blkdiag{Rb3, Q

⊤, Inθ
}

where R ∈ SO(3) is a rotation matrix describing orientation
of the multirotor base, b3 = [0; 0; 1], Q ∈ R3×3 is a Jacobian
matrix mapping Euler angle rate ϕ̇ to body angular velocity
[20]. Lastly, Mt,Mtr, and Mr respectively have the dimension
of Mt ∈ R3×3,Mtr ∈ R3×(3+nθ),Mr ∈ R(3+nθ)×(3+nθ),
and ∆ is external disturbance. We assume that disturbance
∆ is twice differentiable, and both disturbance and its time-
derivative are bounded.

Using S ≜ −M−1
t Mtr, define a new coordinate η ∈ R6+nθ

satisfying q̇ = S̃η̇ where

S̃ =

[
I3 S
0 I3+nθ

]
.

Then, by pre-multiplying S̃⊤ to (1) and using q̇ = S̃η̇,

M̃η̈ + C̃η̇ + G̃ = S̃⊤Bu+ S̃⊤∆ (2)

where M̃ = S̃⊤MS̃, C̃ = S̃⊤(M ˙̃S + CS̃), and G̃ = S̃⊤G.
Now, we state the following:



Proposition 1 ([9]): A new coordinate η satisfying q̇ = S̃η̇
can be taken as η = [pc; r], and EoM is equivalent to the
following decoupled dynamics

mLp̈c +mLgb3 = Rb3T +∆t (3a)

M̃r(r)r̈ + C̃r(r, ṙ)ṙ =
[
S⊤Rb3 Q̃

]
u+∆r (3b)

where mL ≜
∑nθ

j=0 mj , g ∈ R is a gravitational acceleration
constant, M̃r ≜ Mr − M⊤

trM
−1
t Mtr is symmetric, positive-

definite, Q̃ ≜ blkdiag{Q⊤, Inθ
}, ∆t = [I3 S]∆ ∈

R3,∆r = [0 I3+nθ ]∆ ∈ R3+nθ , and C̃r ∈ R(3+nθ)×(3+nθ)

is defined from
C̃ =

[
∗ ∗
∗ C̃r

]
.

Remark 1: By Proposition 1, the equations of motion (1) is
decomposed into translational dynamics of CoM of the aerial
manipulator (3a) and the remaining rotational dynamics (3b).

III. CONTROLLER DESIGN

A. Dynamics reformulation
In (3), compared to conventional multi-rotor dynamics [30],

the body thrust T affects the rotational dynamics (3b) due to
non-zero terms of S⊤Rb3 in the input matrix. Therefore, if
we apply an inner-loop orientation control & outer-loop trans-
lation control strategy which is widely applied for controlling
multi-rotors [29, 30], the thrust T should act as disturbance to
the rotational dynamics. To overcome this issue, we rearrange
the dynamics (3) such that the thrust T needs not to be
considered as disturbance.

Let us define qf = [pc,3; r] ∈ R4+nθ and qu = [pc,1; pc,2] ∈
R2 which represent the configuration of fully actuated, and
underactuated subsystems, respectively. Then, by rearranging
(3), EoM of each subsystem can be obtained as

mLq̈u =

[
b⊤1 Rb3
b⊤2 Rb3

]
T +∆u (4a)[

mL 0

0 M̃r

]
q̈f +

[
mLg

C̃r ṙ

]
=

[
b⊤3 Rb3 0

S⊤Rb3 Q̃

]
u+∆f (4b)

where b1 = [1; 0; 0], b2 = [0; 1; 0], ∆u = [∆t,1; ∆t,2], and
∆f = [∆t,3; ∆r]. ∆u,∆f could include an error term arose
by uncertainty in the CoM position. For brevity, we define
T̄ ≜ b⊤3 Rb3T ,

Mf ≜

[
mL 0

0 M̃r

]
, Cf ≜

[
mLg

C̃r ṙ

]
, Bf ≜

[
1 0

S⊤Rb3 Q̃

]
,

Bu ≜

[
b⊤1 Rb3
b⊤2 Rb3

]
, Ψ ≜

[
cϕ3 sϕ3

sϕ3 −cϕ3

]
, Φ ≜

[
tϕ2

tϕ1/cϕ2

]
.

Then, by definition, BuT = ΨΦT̄ , and (4) can be rewritten
as

mLq̈u = T̄ΨΦd + T̄Ψ(Φ− Φd) + ∆u (5a)
Mf q̈f + Cf = Bf ū+∆f (5b)

where Φd is Φ with ϕ1,d, ϕ2,d instead of ϕ1, ϕ2, and ū =
[T̄ ; τϕ; τθ]. Φd ∈ R2 will be used as a virtual control input to
control the underactuated subsystem (5a). This cascade control
approach is similar to existing works [19, 23] but differs in that
the attitude error term T̄Ψ(Φ−Φd) is strictly considered in the

controller design and analysis. To denote nominal dynamics,
let ∗̂ indicate ∗ with nominal physical parameters. Then, the
nominal counterpart of (5) can be written as

m̂Lq̈u = T̄ΨΦd + T̄Ψ(Φ− Φd) (6a)

M̂f q̈f + Ĉf = B̂f ū. (6b)

(6) is obtained from (5) by inserting nominal parameters and
canceling external disturbance. Note that the orientation error
term in the underacuated dynamics T̄Ψ(Φ−Φd) is not treated
as disturbance and is considered in the nominal dynamics.

Assumption 1: Roll and pitch angles of the multirotor base
are bounded by |ϕ1|, |ϕ2| < π/2.

Assumption 2: The total thrust T is not zero.
For notational consistency and the ease of controller design,

we reformulate (5) as

muq̈u + fu = uu (7a)
mf q̈f + ff = uf (7b)

where

mu ≜ mL, fu ≜ T̄Ψ(Φd − Φ)−∆u, uu = T̄ΨΦd

mf ≜ B−1
f Mf , ff ≜ B−1

f (Cf −∆f ), uf = ū.
(8)

Thanks to Assumption 1, B−1
f always exists and therefore,

all variables in (8) are well-defined. Note also that with
Assumption 1, 2, a bijective map between uu ∈ R2 and
ϕ1,d, ϕ2,d ∈ (−π/2, π/2) can be obtained as

ϕ2,d = tan−1
(
1
T̄
(cϕ3uu,1 + sϕ3uu,2)

)
,

ϕ1,d = tan−1
(

cϕ2,d

T̄
(sϕ3uu,1 − cϕ3uu,2)

)
.

(9)

For controller design, we combine control inputs of the
nominal controller and robust controller as uu = uu,n + uu,r,
uf = uf,n + uf,r where uu,n, uf,n are nominal inputs which
stabilize the nominal system, and uu,r, uf,r are robust control
inputs compensating model uncertainties and disturbance.

B. Nominal control design

In theory, RISE control [24] could guarantee AS even
without a nominal controller. However, since RISE control
relies solely on integrals of error signals, transient performance
could be degraded particularly for hovering control where un-
ceasing non-zero thrust is required. Hence, for better transient
performance, we design a nominal controller as in [26, 28]
for both underactuated and fully actuated subsystems, which
could guarantee AS of the nominal system.

The nominal controller is designed with m̂u ≜ m̂L, m̂f ≜
B̂−1

f M̂f , and f̂f ≜ B̂−1
f Ĉf as follows:

uu,n = f̂u + m̂u(q̈u,d +Kudėu1 +Kupeu1) (10a)

uf,n = f̂f + m̂f (q̈f,d +Kfdėf1 +Kfpef1) (10b)

where eu1 = qu,d − qu, ef1 = qf,d − qf . Kup,Kud ∈ R2×2

and Kfp,Kfd ∈ R(4+nθ)×(4+nθ) are control gain matrices.
For control structure uniformity, f̂u = 0 is added in (10a).



C. RISE control design
Similar to [28, 29], we design a RISE controller for both

the underactuated and fully actuated parts. With control
gains ρu ∈ R,Ku,Λu1,Λu2,Λu3 ∈ R2×2 and ρf ∈
R,Ku,Λf1,Λf2,Λf3 ∈ R(4+nθ)×(4+nθ), robust feedback
control inputs based on RISE are defined as

uu,r = (Ku + ρuI2)(eu2(t)− eu2(0))+ (11)∫ t

0

(Ku + ρuI2)Λu2eu2(τ) + Λu3sgn(eu2(τ))dτ

uf,r = (Kf + ρfI4+nθ
)(ef2(t)− ef2(0))+ (12)∫ t

0

(Kf + ρfI4+nθ
)Λf2ef2(τ) + Λf3sgn(ef2(τ))dτ

where eu2 = ėu1+Λu1eu1, ef2 = ėf1+Λf1ef1, and sgn(·)
is a sign function.

IV. STABILITY ANALYSIS

A. Nominal closed-loop system analysis
We first show that the nominal dynamics with nominal

controller satisfies AS. Analysis of the nominal closed-loop
system is presented after the following lemma.

Lemma 1 ([7, 31]): Consider a system

ẋ1 = f1(x1) (13a)
ẋ2 = f2(x1, x2) (13b)

where x1, f1 ∈ Rn1 and x2, f2 ∈ Rn2 . If x1 = 0 is AS for
ẋ1 = f1(x1), and x2 = 0 is AS for ẋ2 = f2(0, x2), then (13)
is AS to x1 = 0 and x2 = 0.

Theorem 1: For positive-definite, diagonal matrices Kup,
Kud, Kfp, Kfd, the nominal closed-loop system consisting
of EoM (6), control input (10) (uu = uu,n, uf = uf,n), and
roll, pitch desired values (9) is AS.

Proof: The nominal closed-loop system can be written
as

ëu1 +Kudėu1 +Kupeu1 = T̄Ψ(Φd − Φ)/m̂L, (14a)
ëf1 +Kfdėf1 +Kfpef1 = 0. (14b)

Then, since control gains are positive-definite, diagonal ma-
trices, (14b) is AS to [ef1; ėf1] = 0, and (14a) is AS to
[eu1; ėu1] = 0 assuming [ef1; ėf1] = 0. Therefore, by Lemma
1, the closed-loop system (14) is AS.

Remark 2: Theorem 1 shows that even in the presence of
attitude error term T̄Ψ(Φ − Φd) in translational dynamics
which inevitably occurs due from underactuatedness, AS can
still be obtained.

B. Actual closed-loop system analysis
Since the system (7) and controllers (10), (11), (12) of the

underactuated and fully actuated part share the same structure,
we first analyze the following virtual system and control input:

mq̈ = u− f (15a)

un = f̂ + m̂(q̈d +Kdė1 +Kpe1) (15b)

ur = (K + ρIn)(e2(t)− e2(0))+∫ t

0

(K + ρIn)Λ2e2(τ) + Λ3sgn(e2(τ))dτ
(15c)

where [q; q̇] ∈ R2n is a system state, u = un + ur ∈ Rn is a
control input, and ρ ∈ R,Kp,Kd,K,Λ1,Λ2,Λ3 ∈ Rn×n are
diagonal control gain matrices. e1 = qd − q, e2 = ė1 + Λ1e1.
Note that the subscripts u, f are omitted in the virtual system
(15) to differentiate it from the actual system (7).

For the analysis, first define e3 = ė2 + Λ2e2. Then,

mė3 = N − (K + ρIn)e3 − Λ3sgn(e2)−
1

2
ṁe3 − e2 (16)

where

N = (ṁq̈ − ˙̂mq̈d)− ˙̂m(Kdė1 +Kpe1)− m̂(Kdë1 +Kpė1)

+(ḟ − ˙̂
f) + (m− m̂)

...
q d +m(Λ1ë1 + Λ2ė2) +

1

2
ṁe3 + e2.

Let Nd be defined as

Nd = (ṁd − ˙̂md)q̈d + (ḟd − ˙̂
fd) + (md − m̂d)

...
q d

where we overload the notation ∗d to denote ∗ with the
desired state [qd; q̇d]. For fu and ff , fu,d = −∆u, ff,d =
B−1

f,d(Cf,d−∆f ). Then, as in Remark 3 of [24], the following
can be obtained for Ñ = N −Nd as

∥Ñ∥ ≤ µ(∥e∥)∥e∥ (17)

where e = [e1; e2; e3] and µ(·) is a positive, globally invertible,
non-decreasing function.

Lemma 2 ([27]): Take Λ3,i > ∥Nd,i∥∞ + Λ−1
2,i ∥Ṅd,i∥∞

∀i = 1, · · · , n. Then, the following function

Q(t) =

∫ t

0

2ė⊤2 Λ3sgn(e2)dτ + 2

n∑
i=1

Λ3,i|e2,i(0)| −N⊤
d e2

satisfies 0 ≤ Q(t) ≤
∑n

i=1(2Λ3,i + ∥Nd,i∥∞)|e2,i(t)|.
Theorem 2: For the positive-definite, diagonal control gains

satisfying 2Λ2 > In, the closed-loop system of (15) is semi-
globally exponentially stable.

Proof: Consider the following Lyapunov candidate func-
tion:

V =
1

2
e⊤1 e1 +

1

2
e⊤2 e2 +

1

2
e⊤3 me3 +Q. (18)

Then, by Lemma 2, V satisfies the lower and upper bounds of

γ1∥e∥2 ≤ V ≤ γ2∥e∥2 +
n∑

i=1

(2Λ3,i + ∥Nd,i∥∞)|e2,i(t)|

where γ1 = 1
2 min{1,m} and γ2 = 1

2 max{1,m}. Positive
constants m,m are defined to satisfy m ≤ m ≤ m. Computing
the time derivative of V ,

V̇ ≤ − e⊤1 Λ1e1 − e⊤2 Λ2e2 + e⊤2 e1 − e⊤3 (K + ρIn)e3

+ e⊤3 Ñ −
n∑

i=1

Λ2,iΛ3,i|e2,i|+O(t)

where O(t) = −e⊤2 (Ṅd−Λ2Nd)−
∑n

i=1 Λ2,iΛ3,i|e2,i|. From
the condition on Λ3 presented in Lemma 2, O(t) ≤ 0, and by
additionally applying (17),

V̇ ≤ −(λ∗ − µ2(∥e∥)
4k∗

)∥e∥2 −
n∑

i=1

Λ2,iΛ3,i|e2,i|

where we used e⊤2 e1 ≤ 1
2 (∥e2∥

2 + ∥e1∥2). Therefore,
there exists a positive constant c satisfying V̇ ≤ −cV



TABLE I
PHYSICAL PARAMETERS AND CONTROLLER GAINS IN SIMULATION

(DIAGONAL ELEMENTS FOR MATRICES)

Parameter Value (kg) Parameter Value (kgm2 )

m̂0
m̂1
m̂2

2.4
0.41
0.16

Î0
Î1
Î2

10−2[2.5, 2.5, 5.0]

10−2[0.5, 1.0, 1.0]

10−4[0.0, 2.3, 2.3]

Gain Value Gain Value

Kup
Kud

[6, 6]
[4, 4]

Kfp
Kfd

102[1, 4.8, 4.8, 8, 5, 5]

101[5, 4, 4, 4, 10, 10]

Ku, ρu [0.5, 0.5], 0.1 Kf , ρf 10−1[1, 6, 6, 6, 1, 1], 0.05

Λu1
Λu2
Λu3

[20, 20]
[3, 3]

[0.1, 0.1]

Λf1
Λf2
Λf3

[2, 45, 45, 45, 1.5, 1.5]

10−1[30, 8, 8, 8, 1, 1]

10−2[100, 4, 4, 4, 1, 1]

for ∥e∥ < µ−1(2
√
k∗λ∗) where k∗ = mini(Ki), λ∗ =

min{ 1
2 mini(Λ1,i),mini(Λ2,i) − 1

2 , ρ}. Thus, by referring to
the process in [24], the region of attraction S := {e ∈
D|W (e) < γ1(µ

−1(2
√
k∗λ∗))2} can be obtained where

W (e) := γ2∥e∥2+
∑n

i=1(2Λ3,i+ ∥Nd,i∥∞)|e2,i(t)| and D :=
{e ∈ R2n|∥e∥ < µ−1(2

√
k∗λ∗)}, and this completes the

proof.
Remark 3: Rigorous treatment for the discontinuous right

hand side of V̇ due to ė3 (16), which is based on Filippov
solution, can be found in [27]. Note that similar Lyapunov-
based closed-loop system anaylsis was conducted in the paper,
and the analysis can also be applied to validate current
development.

Remark 4: By referring to Lemma 2 and the definition of
Nd, it is noteworthy that the nominal controller contributes to
reducing the required lower bound of the control gain Λ3.

Theorem 3: Given that external disturbances ∆u,∆f and
their time derivatives are bounded, with proper control gains
of both underactuated and fully actuated subsystems satisfy-
ing premises of Theorem 1, Lemma 2, and Theorem 2, the
closed-loop system composed of (7), (10), (11), and (12) is
exponentially stable.

Proof: Constructing a candidate Lyapunov function Va =
Vu+Vf where Vu, Vf are Lyapunov functions of underactuated
and fully actuated parts defined in the same way as (18),
the stability result in Theorem 3 can be obtained by the
same procedure presented in the proof of Theorem 2. Note
that although (17) for the underactuated subsystem should be
modified to ∥Ñu∥ ≤ µu1(∥eu∥)∥eu∥ + µu2(∥ef∥)∥ef∥ due
to the orientation error term T̄Ψ(Φd − Φ) in fu, this does
not limit the stability analysis since there exists a positive,
globally invertible, non-decreasing function µa(·) satisfying
∥Ñu∥ ≤ µa(∥ea∥)∥ea∥ where ea = [eu; ef ]. eu, ef are defined
in the same way as e appeared in (17).

Remark 5: Due to the use of Euler angles, which suffers
from singularity, only local result is acquired in Theorem 3.
However, note that within the singularity-free region F :={
ea ∈ R12+2nθ ||ϕ1|, |ϕ2| < π/2

}
, the region of attraction ap-

peared in Theorem 2 can be expanded by taking larger control
gains to increase k∗, λ∗.

V. SIMULATION RESULTS

To validate the proposed controller, we perform two dif-
ferent simulations where the aerial manipulator is considered
to have a 2 degrees of freedom robotic arm. Nominal inertial

Fig. 2. Tracking error plot of scenario 1. ep := p−pd, eϕ := ϕ−ϕd.

Fig. 3. Tracking error plot of scenario 2. ep := p−pd, eϕ := ϕ−ϕd.

parameters and gains of the proposed controller used in simu-
lation can be found in Tab. 1 where only the diagonal elements
are listed for matrix-valued parameters/gains. Definitions of
mj , Ij can be found in II.

The first scenario is to regulate position deviation from
zero where pd = [0; 0; 0] for all time, while the robotic arm
is commanded to oscillate as θd = [π4 cos(π5 t);

π
4 sin(π5 t))].

On the other hand, in the second scenario, the aerial ma-
nipulator is commanded to follow a circular trajectory as
pd = [cos(π5 t); sin(

π
5 t); 0] in the presence of robotic arm’s

oscillation as θd = [π4 cos(π5 t);
π
4 sin(π5 t))]. The desired yaw

angle is defined to be 0 in both scenarios, for all time. To test
robustness against model uncertainty and external disturbance,
in both scenarios, 30% uncertainty is applied to all inertial
parameters as mj = 1.3m̂j , Ij = 1.3Îj ∀j = 0, 1, 2. Time-
varying external disturbance is applied as ∆ = [∆a; ∆b] where
∆a = [sin(π5 t); cos(

π
5 t); 1], ∆b = 0.1 sin(π5 t)[1; 1; 1; 0.1; 0.1]

in both scenarios.
For comparison, we choose two robust controllers from

each category discussed in I, which are disturbance observer
(DOB)-based controller [14] and adaptive sliding mode con-
troller (ASMC) [20]. Due to the page limit, only tracking
errors of position p and orientation ϕ of the multi-rotor is
illustrated in Figs. 2, 3. The left columns of Figs. 2, 3
denote x,y,z directional position tracking error from the top
to the bottom, and the right columns denote roll, pitch, yaw
orientation tracking error, again from the top to the bottom.
Traversed position trajectories during both scenarios can be
found in Fig. 4. The proposed controller is plotted in black
dashed lines and denoted with the legend RISE while DOB
and ASMC controllers are plotted in red dotted lines and blue
dash-single dotted lines, respectively. In all simulations, as
can be observed in Figs. 2, 3, 4, the proposed RISE method
outperforms the other comparing two in error convergence.
In the error bound perspective however, DOB shows better
performance in attitude tracking, and this results from the fact



Fig. 4. Position trajectories traversed during the operation time of 15
seconds. The left figure shows the result of scenario 1 and the right
figure is the one from scenario 2. The objective of scenario 1 in the left
is to regulate the position at the origin while that of scenario 2 in the right
is to track a circular trajectory of radius 1 centered at the origin.
that DOB [14] can guarantee the boundedness of error during
the transient response, though not the asymptotic convergence.
Note that each controller utilizes the same control gains in
both scenarios, and sufficiently high gains are selected in
all controllers to show comparable performance to the other
two controllers. For each controller, a uniformly positive total
thrust T is obtained in both scenarios.

VI. CONCLUSION

In this paper, we presented a RISE-based controller for
an aerial manipulator which guarantees exponential stability
in the presence of uncertainties. To formally consider the
underatuatedness issue of the aerial manipulator, dynamics
decomposition into the two underactuated and fully actuated
subsystems was proposed on which a robust controller was
designed. We first showed that the nominal feedback controller
could guarantee asymptotoic tracking if there exists no uncer-
tainty. A robust controller was then proposed by combining
a nominal controller and a RISE controller, applied to both
subsystems. Through Lyapunov-based stability analysis, we
proved that the tracking error converges to zero exponentially,
and comparative studies with existing robust controllers for
an aerial manipulator demonstrated that the proposed method
surpassed the others in convergence property.
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