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Aerial physical interaction with robust stability
guarantee against sudden collision and contact-loss

Dongjae Lee, Jeonghyun Byun, and H. Jin Kim

Abstract—Aerial physical interaction (APhI) may incur un-
expected collision or contact-loss due to uncertainty and un-
awareness of environment dynamics. Such contingencies should
be carefully addressed and analyzed since they can deteriorate
performance and even destabilize the interacting aerial robot.
To this end, this work presents a complete hybrid system model
valid throughout APhI with uncertain discontinuities in velocity
and interaction wrench associated with unexpected collision and
contact-loss. A disturbance-observer-based robust controller is
then proposed to ensure robustness against continuous distur-
bance, and the closed-loop hybrid system is analyzed, showing
further robustness against uncertain discontinuities. Next, we
propose a motion planning algorithm ensuring practical safety
with respect to rotor saturation while facilitating physical inter-
action. The proposed framework is demonstrated in five different
experiment scenarios that include multiple occurrences of sudden
collision and contact-loss: pushing a movable object 1) under
unexpected change of friction, 2,3) colliding with another object,
4) on a slanted surface, and 5) with multiple contacts.

Index Terms—aerial physical interaction, impulsive switched
system, hybrid system, disturbance-observer, input-to-state sta-
bility.

I. INTRODUCTION

Aerial physical interaction (APhI) has been an active re-
search topic in recent decades [1, 2]. During APhI where
a non-zero interaction wrench exists, an aerial robot may
encounter various types of discontinuities. For example, im-
perfect estimation of the distance to a contact surface or
surrounding obstacles incurs sudden collision which leads
to a velocity jump [3, 4]. Furthermore, when an interacting
object suddenly moves, an aerial robot experiences a jump
in interaction wrench due to the discontinuous nature of the
friction in the contact surface between the robot and the object
or between the object and environment. Such discontinuity
in interaction wrench becomes more apparent when sudden
contact-loss happens, for instance, when an initially static
interacting object slides down a slope after being pushed as
in Fig. 1(c).

A. Problem description

In this work, we consider the problem of APhI with
a possibly dynamic object where discontinuities by sudden
collision or contact-loss may occur. Although recent works
[5–7] consider similar task of pushing a possibly dynamic
object, they mostly assume that no discontinuity in velocity
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Fig. 1. Four different experiments showing robustness against sudden collision
or contact-loss, representative phenomena including uncertain discontinuities
in velocity and interaction wrench, during pushing a possibly dynamic object
with unknown dynamics. A string connected to the robot is only for safety
regulation.

or contact wrench exists; thus, robustness with respect to
such discontinuities may not be guaranteed, and the perfor-
mance can get degraded. One way to formally capture such
discontinuities in a modeling process is to utilize a hybrid
dynamical system [3, 8, 9]. There exist a few studies [4, 10–12]
on aerial robots that adopt hybrid dynamical system to model
aerial physical interaction. However, they have limitations in
that discontinuities in velocity or interaction wrench are not
addressed, and/or closed-loop stability is not analyzed with
respect to all state variables.

Next, since it is difficult to predict the response of an un-
known movable object to collision and to continuous interac-
tion wrench exerted from an aerial robot, uncertainty should be
considered in the system dynamics model. For example, if only
perfectly plastic collision is taken into account as in [3, 13–15],
the velocity after the collision can be modeled as zero and no
uncertainty exists; however, because such simplification is not
valid when interacting with a movable object and it is difficult
to predict the response of the movable object to the collision,
uncertainty is unavoidable in the velocity jump modeling.

Lastly, to autonomously and safely execute APhI of pushing
an object with unknown physical parameters including mass,
moment of inertia and friction model, a motion planning
strategy should be 1) adaptive to overcome uncertainty of
the object and 2) aware of physical limitation of the platform
for safety. Since an object has unknown physical parameters,
the magnitude of the interaction wrench required to make
the object move is unknown. Furthermore, a pushing strat-
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egy without due consideration may result in an excessive
interaction wrench, especially when engaging with an object
exhibiting motion constraints in specific directions or becom-
ing wedged while being pushed. Although there exist a few
pushing strategies for the APhI task [5, 7, 16–18], no work
considers rotor saturation by excessive interaction wrench
generation.

B. Objective and contribution
In the perspectives described above, the primary objective of

this work is to provide robust stability guarantee of APhI even
in the presence of an uncertain interaction model and unknown
jumps in velocity and interaction wrench. To accomplish this
objective, we first present a hybrid dynamical model of an
aerial robot conducting physical interaction with a possibly
dynamic object to encompass various APhI tasks. In contrast
to existing models for APhI, the derived hybrid dynamical
model is rich enough to capture discontinuities in velocity and
interaction wrench and their instant occurrences that cannot be
predefined with known timings. Since the models for friction
and impact cannot be precisely identified before physical
interaction, we allow uncertainties in modeling APhI as a
hybrid system.

Next, we design a disturbance-observer (DOB)-based robust
controller to provide robustness against model uncertainty
and external disturbance. Compared with our previous work
[5], we further modify the control structure to ensure that
control inputs are well-defined regarding underactuatedness of
conventional multirotors and to facilitate stability analysis of
the overall hybrid system. Then, by representing the closed-
loop system as an impulsive switched system and analyzing
its stability, we verify that the aerial robot is robust not only
to continuous disturbances but also to sudden contact-loss
and collision incurring uncertain discontinuities in velocity
and interaction wrench in unknown timings. Although the
proposed methods are primarily designed considering under-
actuated aerial robots, our result is also applicable to fully
actuated aerial robots with little modification.

In addition to the primary objective, our secondary objective
is to design a saturation-aware pushing strategy during APhI of
pushing a possibly dynamic object. By utilizing an estimate of
the interaction force, we can avoid generation of an excessive
interaction force and prevent rotor saturation. In addition,
by integrating the proposed strategy with a path navigation
algorithm, the proposed integrated motion planner enables an
aerial manipulator to autonomously execute more complex
APhI including sequential pushing of a possibly dynamic
object while altering contact points as in Fig. 1 (d).

Finally, to demonstrate the proposed methods, we conduct
extensive experiments: pushing a movable object 1) under un-
expected change of friction, 2) colliding with another movable
object, 3) colliding with a static environment, 4) on a slanted
surface incurring sudden contact-loss, and 5) capable of both
translation and rotation with multiple contacts. Through the
experiments illustrated in Fig. 1, we successfully demonstrate
effectiveness of the proposed framework.

To summarize, main contributions of this study are as
follows:

• complete hybrid system modeling valid throughout APhI
with possible jumps in velocity and interaction wrench

• robust controller design and closed-loop hybrid system
stability analysis

• saturation-aware motion planning for APhI with a possi-
bly dynamic object

• experimental validation involving pushing a movable ob-
ject 1) under unexpected change of friction, 2,3) colliding
with another object, 4) on a slanted surface incurring
sudden contact-loss, and 5) capable of both translation
and rotation with multiple contacts

II. RELATED WORK

A. System modeling for APhI
Considering kinematic constraint(s) existing during physical

interaction, constrained system dynamics can be derived using
Euler-Lagrange formulation as in [17, 19] or using quasi-
steady state assumption as in [20]. However, relying on such a
single constrained system dynamics model, system dynamics
during no interaction or transition between non-interacting
mode and interacting mode cannot be defined. This lack of
richness in describing system dynamics may prevent proper
controller design for the whole system and formal stability
guarantee. Two equations of motion each describing non-
interacting and interacting modes are introduced in [21, 22],
but still such system dynamics representation cannot capture
possible discontinuity occurring during the transition between
the two modes. Another approach to model APhI is to allow
an exogenous signal, i.e. an interaction wrench, to appear in
the system dynamics [5, 7, 23–27]. However, since most of
the works assume the interaction wrench to be continuous or
even differentiable, their system analyses may not accord with
a more general setting including an impulsive or discontinuous
interaction wrench. Thus, a new system model is required that
can cover multiple sets of equations of motion according to
interacting and non-interacting modes and transitions among
the modes that can capture discontinuity, while enabling
system analysis to guarantee the stability of the system.

To handle such issues, a hybrid system [8] has been
introduced to model APhI. However, existing works have
limitations in that they either rely on simplified or linearized
dynamics [4, 10] or consider only simple transition conditions
[11, 12]. Unlike in general APhI where when and how often
jumps in state or interaction wrench occur are unknown, [11]
tackles only a known interaction wrench jump happening only
once during a plug-pulling task, and [12] assumes to know the
exact timing and model of a velocity jump. Since environment
parameters including restitution coefficient are usually inacces-
sible in general, an exact velocity jump model is unknown.
Therefore, to fully represent dynamic behavior of APhI, it
is required to derive a system model that can 1) encompass
full dynamics of an aerial robot, 2) accommodate flexibility
in defining timing and frequency of mode transitions, and 3)
involve uncertainty in system dynamics.

B. Control and stability analysis for APhI
The control objective is to enable an aerial manipulator

to perform APhI while ensuring robustness against various
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types of disturbance or uncertainty including near-wall effect,
a robotic arm’s motion, interaction wrench during APhI (if
considered as a disturbance), and uncertain inertia of the
aerial manipulator itself. Furthermore, we additionally aim to
verify robustness to uncertain discontinuities in velocity and
interaction wrench.

Although there exist various papers on controlling aerial
manipulators [6, 7, 10, 20–24, 26], they either do not present
stability analysis or do not tackle robustness against multiple
types of disturbance or disturbance rejection property in their
stability analysis. Thus, performance in the presence of a large,
time-varying disturbance such as sudden robotic arm’s motion
with large amplitude or large interaction wrench would not be
ensured and may easily get deteriorated. To ensure such ro-
bustness, various robust control techniques have been proposed
[5, 28–31]. However, since they require an external disturbance
to be continuous or even continuously differentiable while
treating an interaction wrench as a disturbance, their stability
analyses are no longer valid if an interaction wrench becomes
discontinuous or impulsive.

To address robustness in the presence of discontinuous
interaction wrench, [11, 32] design a robust switching con-
troller for a task of pulling a wedged object. However, since
distinguishing the exact controller switch timing is difficult
in practice, and delayed controller switching may rather lead
to instability [33], it would be demanding to ensure stability
using a switching controller in the presence of multiple jumps
with unknown timings. Therefore, to wholly satisfy the control
objective, it is required to design a robust controller and
provide stability guarantee while taking multiple jumps with
unknown timings into account.

C. Pushing strategy for APhI with a possibly dynamic object

As one representative APhI task involving sudden collision
and contact-loss, we perform pushing a possibly dynamic
object using an aerial manipulator. Since physical parameters
of the interacting object, such as mass, moment of inertia,
and friction model, are usually unknown, methods assuming
to know those physical parameters of the object [16, 17] may
be impractical. Although [7] presents a pushing strategy where
a constant reference is assigned for an interaction force, such
strategy would fail if the predefined constant force reference
is smaller than the maximum static friction of the object or
may induce a large overshoot if the force reference is taken
to be conservatively, excessively large. Therefore, a pushing
strategy should be adaptive to the pushing object’s state, either
by directly or indirectly modulating the interaction wrench.

To achieve such adaptive nature, there have been strategies
to design the interaction wrench with the object’s position
error [5, 6, 12, 21] or with a velocity error of the object
[18, 19]. Although not presented in most papers, the underlying
assumption of these strategies is that an aerial manipulator is
capable of generating a sufficiently large interaction wrench
that enables to overcome the maximum static friction of the
object being pushed. However, in cases of the object being
constrained in certain direction or the object being stuck in-
between moving, these strategies may suffer from actuator

saturation for blindly updating the interaction wrench without
considering physical limits of actuators. Therefore, to safely
exploit an aerial manipulator in an unstructured, possibly
dynamic environment, a pushing strategy should also be aware
of such excessive interaction wrench generation.

III. PRELIMINARIES ON SYSTEM ANALYSIS

A. Impulsive switched system
To rigorously analyze a system with both continuous and

discontinuous transitions of state variables, we adopt impulsive
switched system to model a closed-loop system with such
hybrid behavior. Let ld be an index set indicating family of
discrete dynamics {gi : i ∈ ld}, and consider the following
impulsive switched system [34–37]:{

ẋ(t) = f(x(t), ω(t)), t ̸= tk, k ∈ N
x(t+) = gik(x(t

−), ω(t−)), t = tk, k ∈ N, ik ∈ ld
(1)

where x ∈ Rn is the system state, ω ∈ Rm is a locally bounded
disturbance input, and ẋ denotes the right-hand derivative of x.
x(t+), x(t−) are defined as x(t+) = lims→t+ x(s), x(t−) =
lims→t− x(s). If not ambiguous, we use x+ := x(t+) and
x− := x(t−) for brevity. The set of impulse times {tk : k ∈ N}
is a strictly increasing sequence, and we assume non-Zeno
behavior as in [34, 35], i.e., discrete dynamics does not occur
infinite times in finite time interval [38].

B. Input-to-state stability
Both continuous and discrete dynamics include perturbation

terms due to uncertain model parameters and disturbance. To
analyze closed-loop system’s stability in the presence of such
perturbation, one of the widely applied concept is input-to-
state stability (ISS) [39]. ISS can be formally defined for the
impulsive switched system (1) as follows.

Definition 1 ([36]). The system (1) is said to be input-to-state
stable, if there exist functions β ∈ KL and γ ∈ K∞, such that
for each x0 ∈ Rn and input function u, the solution x of (1)
exists globally and satisfies

∥x(t)∥ ≤ β(∥x0∥, t− t0) + γ( sup
t0≤s≤t

∥u(s)∥). (2)

Here, a function γ : [0,∞) → [0,∞) is said to belong to
class K if it is continuous, strictly increasing, and γ(0) = 0.
A function γ belongs to K∞ if γ ∈ K and γ(t) → ∞ as
t → ∞. Furthermore, a function β : [0,∞)× [0,∞) → [0,∞)
is a class KL function if β(·, t) ∈ K for each fixed t, and
β(r, t) decreases to 0 as t → ∞ for each fixed r.

C. Average dwell-time
In practice, discrete dynamics incurred by sudden collision

or contact-loss does not occur too frequently. To formalize
such notion, we introduce a concept of average dwell-time
(ADT).1

1Compared to the concept of dwell-time [36] which might not be satisfied
during aerial physical interaction due to its hard restriction of positive lower
bound to every impulse time interval tk − tk−1, average dwell-time is less
conservative and can be satisfied in actual experiments since there only exist
a finite number of impulses.
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Definition 2 ([35, 40]). For each t ≥ τ ≥ 0, let N(t, τ) denote
the number of impulse times in the open interval (τ, t). For
given N0, τD > 0, and a set of all impulsive signals for which

N(t, τ) ≤ N0 +
t− τ

τD
, (3)

the constant τD is called the average dwell-time and N0 the
chatter bound.

The finite number of impulse condition can be easily
transformed to ADT condition by defining N0 as the upper
bound of the number of impulses. Therefore, the idea of
average dwell-time can be regarded to be trivially true in actual
mechanical systems such as aerial physical interaction, but it is
essential in deriving sufficient condition of ISS for impulsive
switched system.

D. Lyapunov-based sufficient condition of ISS for impulsive
switched system

With a little modification, we derive a Lyapunov-based
sufficient condition of ISS for impulsive switched system (1)
based on [35] as follows.

Theorem 1. Suppose that there exists a C1 function V : Rn →
R, positive scalars c, d, and three class K∞ functions α1, α2, χ
such that

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥) (4a)
∂V

∂x
f(x, ω) ≤ −cV (x) + χ(∥ω∥) (4b)

V (gi(x, ω))) ≤ edV (x−) + χ(∥ω∥), ∀i ∈ ld (4c)

Suppose also that average dwell time (ADT) condition holds
with τD > d/c and N0 arbitrarily. Then the impulsive
switched system (1) is input-to-state stable (ISS).

Proof. See appendix A.

E. Overview of system modeling, controller design and stabil-
ity analysis

Although uncertainties and disturbance during continuous
dynamics can be compensated through robust control inputs, it
is not true during discrete dynamics. This is because impulsive
control input at exact timing tk is required to overcome
uncertainties during discrete dynamics, which is typically not
available in actual robotic platforms due to difficulty in detect-
ing exact impulse timing and actuating impulsive force/torque.
Therefore, instead, we focus on designing a robust controller
from which ISS is guaranteed during continuous dynamics
and analyze the closed-loop system during discrete dynamics
such that ISS of the overall system, which is modeled as
an impulsive switched system, is guaranteed. To obtain such
result, we first derive an open-loop hybrid system model of
aerial physical interaction with a movable object in section
IV, and design a disturbance-observer-based robust controller
in section V by which ISS during continuous dynamics is guar-
anteed in Lyapunov sense. Discrete dynamics is then analyzed
in section VI where we propose an impulsive switched system

Fig. 2. Hybrid system model of aerial physical interaction with a movable
object. Mode l: FF (Free Flight), Mode 2: SPI (Static Physical Interaction),
Mode 3: DPI (Dynamic Physical Interaction).

model for the closed-loop system and analyze ISS property of
the impulsive switched system using Theorem 1.

The main variables used in system modeling, controller
design, and stability analysis can be found in Table I.

F. Notations

Since there appear various systems henceforth, for example,
aerial manipulator, underactuated subsystem, fully actuated
subsystem, and multirotor, to clarify to which system the vari-
ables belong, we uniformly use different subscripts a, u, f,m
throughout the paper. For a state variable x ∈ Rn and its
desired value xd ∈ Rn, we define x̃ = x − xd. To express
changes in the state x from an impulsive event, x+ and
x− are used to denote the state after and before the event,
respectively. We use vi, 0j×k,⊗, In, and ∥·∥ to denote the ith

component/row of a vector/matrix v, zero matrix in Rj×k, the
Kronecker product, identity matrix in Rn×n, and an induced
2-norm of a matrix. Also, for a column vector a and b,
[a; b] := [a⊤ b⊤]⊤. Lastly, c∗, s∗, and t∗ denote shorthands
for cos(∗), sin(∗), and tan(∗), respectively.

IV. SYSTEM MODELING

We first model an aerial manipulator conducting physical
interaction using hybrid system [8] as in Fig. 2. During
free-flight, or physical interaction, the system state follows
continuous differential equations which can be modeled from
Euler-Lagrange equation [5, 19]. A set of these continuous
differential equations are called flow map. Here, three modes
are introduced, which are free-flight (FF), static physical
interaction (SPI), and dynamic physical interaction (DPI).

Next, we model transition or jump between modes. Impul-
sive jumps, which are jumps starting from FF to any modes,
are modeled assuming a rigid body collision [41] since these
jumps necessarily include a collision. Instantaneous rebound
due to rigid body collision during free-flight is also modeled
as an impulsive jump as in [4], namely FF to FF itself as
depicted in Fig. 2. Non-impulsive jumps are also modeled,
i.e. jumps starting from SPI or DPI , to describe a possible
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TABLE I
TABLE OF VARIABLES IN SECTIONS IV, V, VI

Variable Description

Section IV

rc Center of mass of aerial manipulator
ϕ ZYX Euler angles of multirotor platform
θ Joint angles of robotic arm
za Configuration of aerial manipulator za = [rc;ϕ; θ]
R Rotation matrix of multirotor’s orientation
T, T̂ Multirotor’s total thrust and modified total thrust
τϕ Multirotor’s body torque
τθ Joint torque of robotic arm
Φ Coupling term between translational and rota-

tional dynamics of multirotor
Φd Φ with ϕd instead of ϕ
λa Interaction wrench
δa External disturbance (excluding interaction

wrench)
zu, zf Configurations of underactuated, and fully actu-

ated subsystems
uu, uf Control inputs of underactuated, and fully actuated

subsystems
δV End-effector velocity jump
λimp Intensity of impulsive interaction wrench

Sections V & VI

[z; ż] System state of a general system
∆ External disturbance of a general system
z̃ Configuration error between z and zd
qi, pi Controller states of a general system
u Control input of a general system
ū Nominal control input of a general system
udob DOB control input of a general system
ξi, ηi Controller states after coordinate transformation

of a general system
ξ∗i , η∗

i Quasi-steady state variables of ξi, ηi
ξ̃i, η̃i Error variables between ξi, ηi and ξ∗i , η∗

i

y State error y = [z̃; ˙̃z] of a general system
x Concatenated error of a general system x = [y; η̃]
f Dynamics of x
V1, V2, V Quadratic positive-definite functions of y, η̃, and

x, satisfying V = V1 + V2

qu,i, pu,i,
qf,i, pf,i

qi, pi of underactuated and fully actuated subsys-
tems

uu, ūu, uf ,
ūf

u, ū of underactuated and fully actuated subsys-
tems

uu,dob,
uf,dob

udob of underactuated and fully actuated subsys-
tems

yu, yf , ym y of underactuated, fully actuated subsystems, and
multirotor system

η̃u, η̃f , η̃m η̃ of underactuated, fully actuated subsystems, and
multirotor system

xu, xf , xm x of underactuated, fully actuated subsystems, and
multirotor system

fu, ff , fm Error dynamics of xu, xf , xm

Vu, Vf , Vm V of underactuated, fully actuated subsystems,
and multirotor system

δλ Interaction wrench jump
gm,i Jump map models (i = 1, 2, 3)
Kam, Kms Kinetic energies of aerial manipulator and mov-

able object

discontinuity of the interaction wrench. For example, these
jumps can capture slip in contact during physical interaction.
A slip without contact-loss can be represented by jumps from
{SPI,DPI} to {SPI,DPI} while a slip with contact-loss
can be modeled by jumps from {SPI,DPI} to FF . We use a
term jump map to describe a set of all possible jumps between
modes.

Configuration of an aerial manipulator can be described
using rc ∈ R3, ϕ ∈ R3, θ ∈ Rnθ which denote center of mass
(CoM) position of the aerial manipulator, ZYX Euler angles of
the multirotor platform, and joint angles of the robotic arm,
respectively. Control inputs are the multirotor’s total thrust
T ∈ R, the multirotor’s body torque τϕ ∈ R3, and the joint
torque of the robotic arm τθ ∈ Rnθ . However, since most
lightweight motors composing a robotic arm equipped on an
aerial manipulator are not directly torque-controllable, we do
not regard τθ as a control input henceforth and instead assume
that there exists an exogenous position/velocity controller. To
consider underactuatedness of the multirotor and exogenous
controller of the robotic arm, we decompose system dynamics
of the aerial manipulator in the following subsection as

Dynamics

multirotor

{
underactuated subsystem (7a)
fully actuated subsystem (7b)

robotic arm (49)

where derivation of the robotic arm dynamics can be found in
appendix B.

A. Flow map

If a model of the interacting dynamic object is known, it
would be possible to derive a complete equation of motion of
DPI mode. However, since physical parameters of the moving
object such as mass or moment of inertia are uncertain, and
motion constraints of the object due to surrounding envi-
ronment are also unknown, we model an interaction wrench
during DPI mode as an external disturbance to the aerial
manipulator. Likewise, an interaction wrench during SPI
mode is also modeled as a disturbance to utilize a single robust
controller for all modes. Therefore, equations of motion of DPI
and SPI can be deduced by adding an interaction wrench term
to that of FF mode.

Using a generalized coordinate za = [rc;ϕ; θ] ∈ R6+nθ ,
equations of motion of SPI and DPI modes can be derived
from Euler-Lagrange equation as

Maz̈a +Ha(za, ża) = Baua + J⊤
a λa + δa (5)

where ua = [T ; τϕ; τθ], λa ∈ R6 is an interaction wrench,
δa ∈ Rnz is external disturbance except for an interaction
wrench. Ma ∈ R6+nθ×6+nθ , Ha ∈ R6+nθ , Ja ∈ R6×6+nθ are
mass matrix, Coriolis and gravity term, and Jacobian matrix,
respectively. We explicitly separate an interaction wrench and
external disturbance, and (5) can be easily converted to FF
mode dynamics by erasing an interaction wrench term J⊤

a λa.
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Thanks to [42, Prop. 2], the equations of motion (5) can be
decomposed into translational and rotational motions as

mLr̈c +mLge3 = Re3T + J⊤
r λa + δr (6a)[

Mϕ Mϕθ

M⊤
ϕθ Mθ

] [
ϕ̈

θ̈

]
+

[
Cϕ

Cθ

]
=

[
Bϕ

Bθ

]T
τϕ
τθ

+

[
J⊤
ϕ

J⊤
θ

]
λa +

[
δϕ
δθ

]
(6b)

where mL, g ∈ R are the total mass of the aerial manipulator
and gravitational acceleration. Note that separation between
translational (6a) and rotational (6b) dynamics is possible
thanks to the choice of coordinate. Since the robotic arm is
assumed to be stabilized by an exogenous controller, we only
consider the dynamics of the multirotor. However, dynamic
coupling from the motion of the robotic arm to the multirotor
is not negligible, and the effect is included in the following
modified disturbance term δf . To consider underactuatedness
of a multirotor, we rearrange (6) to divide equations of motion
into an underactuated part zu = [rc,1; rc,2] ∈ R2 and a fully
actuated part zf = [rc,3;ϕ] ∈ R4 as

mLz̈u = ΨΦdT̂ + J⊤
u λa + δu (7a)

Mf z̈f + Cf = Bf

[
T̂
τϕ

]
+ J⊤

f λa + δf (7b)

where T̂ = e⊤3 Re3T , δu = Ψ(Φ − Φd)T̂ + [δr,1; δr,2], δf =
[δr,3; δϕ −Mϕθ θ̈],

Mf =

[
mL 0
0 Mϕ

]
, Cf =

[
mLg
Cϕ

]
, Bf =

[
1 0

Ŝ⊤
ϕ Re3 Q⊤

]
,

and Ŝϕ = Sϕ/(e
⊤
3 Re3) ∈ R3×3.2 Ju = [Jre1 Jre2] and Jf =

[Jre3 Jϕ]. Ψ and Φ are defined as

Ψ =

[
cϕ3 sϕ3

sϕ3 −cϕ3

]
,Φ =

[
tϕ2

tϕ1/cϕ2

]
,

and from definition, ΨΦT̂ = [I2 02×1]Re3T . By inverting the
mass matrices in (7), equations of motion can be written as

z̈u = Guuu +∆u (8a)
z̈f = Ff +Gfuf +∆f (8b)

where Gu = m−1
L ΨT̂ , ∆u = m−1

L (J⊤
u λa + δu), Ff =

−M−1
f Cf , Gf = M−1

f Bf , ∆f = M−1
f (J⊤

f λa + δϕ), uu =

Φd, and uf = [T̂ , τ⊤ϕ ]⊤. Note that the effect of discontinuity
in ∆u,∆f on stability, which is induced by discontinuity in
the interaction wrench λa, will be analyzed in section VI.

Remark 1. To handle underactuatedness of a conventional
multirotor, desired roll, pitch angles ϕ1,d, ϕ2,d should be cal-
culated from a control input of the underactuated subsystem.
Our previous work [5] and other existing works [30, 43] rely
on arcsin(·) to solve this problem, but due to the limited
domain [−1, 1] ∈ R, the problem can become ill-posed espe-
cially in applying robust controllers since they often generate
large-amplitude control inputs to compensate disturbance. To
address this problem, similar to [44, 45], we formulate the
control input for the underactuated subsystem uu = Φd

2A definition of Sϕ can be found in appendix C.

using only tan(·), and thus, the inversion problem from Φd

to ϕ1,d, ϕ2,d becomes feasible for every uu = Φd ∈ R2.

B. Jump map

Jumps can be classified into impulsive and non-impulsive
jumps. We model impulsive jumps based on rigid body
collision assumption applied in various robot-environment
interaction tasks [3, 4].

1) Impulsive jump: Every jump from FF mode can be
interpreted with an impulsive jump. By assuming that a
generalized position z does not change during the impact, and
control input u and disturbance δ do not contain impulses,
the following equation of generalized momentum conservation
can be obtained by ”integrating” (5) over the ”duration” of the
impact as [3]

Ma(ż
+
a − ż−a ) = J⊤

a λimp. (9)

where (∗)+, (∗)− denote values of (∗) just after and before
the impact, and λimp =

∫ t+

t−
λa(τ)dτ is the intensity of the

impulsive interaction wrench.
In [3], perfectly plastic impact and static contact surface are

further assumed so that an impact model is written as

Jaż
+
a = 0.

However, for aerial physical interaction with a possibly dy-
namic object, imperfect elastic impact and motion of a contact
surface should be considered. Therefore, we modify the impact
model at a contact point/surface (or an end-effector of the
robotic arm) as

Ja(ż
+
a − ż−a ) = δV (10)

where δV ∈ R6 denotes a change in the end-effector twist
before and after the impact. For perfectly plastic collision,
δV = −Jaż

−
a + V+

s where V+
s ∈ R6 describes the mov-

able object’s twist at the contact surface. Since there exists
no universal law for modeling δV [41], and most models
require physical parameters of the contact surface including
static/dynamic friction coefficient and coefficient of restitution,
we leave the term unmodeled. Note that the term δV will be
considered as perturbation to the system and analyzed in the
stability analysis of the entire impulsive switched system.

Combining (9) and (10), the overall impact model can be
written as [

Ma −J⊤
a

Ja 0

] [
ż+a
λimp

]
=

[
Maż

−
a

Jaż
−
a + δV

]
(11)

from which the closed-form solution can be obtained as

ż+a = ż−a + J†
aδV, λimp = (JaM

−1
a J⊤

a )−1δV (12)

where J†
a := M−1

a J⊤
a (JaM

−1
a J⊤

a )−1 is a weighted pseudo-
inverse of Ja with weight Ma.

2) Non-impulsive jump: Unlike jumps starting from FF
mode, every jump from SPI or DPI is non-impulsive. There-
fore, there exists no change in the system state during the
jumps. However, discontinuity in the interaction wrench can
occur because taking DPI → FF as an example, interac-
tion wrench vanishes during the jump. Such discontinuity
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in interaction wrench will be further discussed in the jump
map analysis. The state change during non-impulsive jump is
modeled as

z+a = z−a , ż+a = ż−a . (13)

V. CONTROLLER DESIGN AND FLOW MAP ANALYSIS

In this section, we design a robust controller based on
disturbance-observer (DOB) [46] that not only guarantees
input-to-state stability but also arbitrarily minimizes the effect
of disturbance. It will be shown that theoretically, the effect of
disturbance can be made to be arbitrarily small by modulating
a control parameter ϵ. Variables with no subscript are used
when describing system dynamics and controller for a general
nonlinear system to distinguish variables from those for the
aerial manipulator.

Although the proposed robust controller shares similar struc-
ture to those in [5, 30], they only analyze transient performance
with respect to nominal dynamics. In contrast, to facilitate
stability analysis of each mode and also the overall hybrid
system, we additionally 1) augment the control structure to
include nominal control input ū, 2) analyze further to show ISS
stability of the closed-loop system of each mode, and 3) prove
disturbance attenuation in the closed-loop system perspective.

A. DOB-based controller design for generalized nonlinear
system

Since every subsystem of the system dynamics of each
mode (8a), (8b) has the same form as (14), we first design
a controller for the below generalized nonlinear system:

z̈ = F (z, ż, t) +G(z, ż, t)u+∆ (14)

where [z; ż] ∈ R2nz is a system state, u ∈ Rnu is a control
input, and ∆ is an external disturbance. To consider parametric
uncertainties, we write nominal counterparts of F (z, ż, t) and
G(z, ż, t) as F̄ (z, ż, t) and Ḡ(z, ż, t). Nominal dynamics can
be constructed using nominal parameters of a system, or even
a different structure can be utilized [30]. Thanks to the full
actuation assumption, nu = nz and G, Ḡ ∈ Rnz×nz are
invertible.

A DOB-based controller is designed as follows:

q̇i = Aqi +Bzi, ṗi = Api +BḠiu,

u = ū+ Ḡ−1udob, udob,i = pi,1 − (q̇i,2 − F̄i),
(15a)

ū = Ḡ−1(z̈d −Kpz̃ −Kd
˙̃z − F̄ ) (15b)

where pi, qi ∈ R2 are controller states with i = 1, · · · , nz ,
and

A =

[
0 1

−a0/ϵ
2 −a1/ϵ

]
, B =

[
0

a0/ϵ
2

]
,

with a0, a1 > 0 being tuning parameters and ϵ > 0 being
an arbitrarily small constant. Kp,Kd ∈ Rnz×nz in (15b) are
positive definite control gain matrices.

To analyze disturbance attenuation property, we conduct the
following coordinate transformation for pi, qi:

ξi =

[
1
ϵ qi,1 +

a1

a0
qi,2 − 1

ϵ zi
qi,2 − żi

]
, ηi =

[
pi,1 − q̇i,2

ϵ(ṗi,1 − q̈i,2)

]
. (16)

From (15a) and (16), dynamics of ξi and ηi can be obtained
as

ϵξ̇i = Aξξi − ϵE2(Fi +Giu+∆i) (17a)
ϵη̇i = Aηηi + a0E2(Ḡiu− (Fi +Giu+∆i)) (17b)

where E2 = [0; 1], and

Aξ =

[
−a1 1
−a0 0

]
, Aη =

[
0 1

−a0 −a1

]
.

From the singular perturbation theory [47, Ch. 11], by taking
ϵ = 0, the quasi-steady state ξ∗, η∗ can be derived from (17)
as ξ∗i = 0, η∗i,2 = 0, and

η∗i,1 = Ḡiu
∗ − (Fi +Giu

∗ +∆i). (18)

Defining error variables as ξ̃i = ξi − ξ∗i , η̃i = ηi − η∗i , error
dynamics are derived as

ϵ
˙̃
ξi = Aξ ξ̃i − ϵE2(Fi +Giu+∆i) (19a)

ϵ ˙̃ηi = Aη η̃i + ϵη̇∗i . (19b)

Defining η[1] = [η1,1; · · · ; ηnz,1] ∈ Rnz , using (15a), (18), and
the fact that udob = η[1] + F̄ ,

η∗[1] = ḠG−1{(Ḡ−G)ū+ (F̄ − F )−GḠ−1F̄ −∆}. (20)

Therefore, applying (15a) and (20) to (14),

z̈ = F̄ + Ḡū+GḠ−1η̃[1]. (21)

Now, combining (21) and (15b), the closed-loop system can
be written with y = [z̃; ˙̃z] as

ẏ = Ayy + (E2 ⊗ Inz )GḠ−1(Inz ⊗ E⊤
1 )η̃ (22a)

˙̃η =
1

ϵ
(Inz

⊗Aη)η̃ + η̇∗ (22b)

where E1 = [1; 0], η̃ = [η̃1; · · · ; η̃nz
] and

Ay =

[
0nz×nz

Inz

−Kp −Kd

]
.

Note that we omit ξ̃ in the closed-loop system analysis
since it has no effect on the time evolution of y. However,
boundedness of ξ̃ can still be shown and refer to [46] for such
analysis.

Now, we propose the following:

Proposition 1. Consider Lyapunov candidates

V1(y) =
1

2
y⊤Pyy (23a)

V2(η̃) =
1

2
η̃⊤Pη η̃ (23b)

where Py ∈ R2nz×2nz , Pη ∈ Rnz×nz are symmetric, positive-
definite matrices satisfying PyAy+A⊤

y Py = −2I2nz
, Pη(Inz

⊗
Aη)+(Inz

⊗Aη)
⊤Pη = −2Inz

. Then, for a Lyapunov function

V (y, η̃) = V1(y) + V2(η̃), (24)

there exist a positive constant c and a class K∞ function χ
satisfying

V̇ =
∂V

∂x
f(x, η̇∗) ≤ −cV + χ(∥

√
ϵη̇∗∥) (25)
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where x = [y; η̃], ẋ = f(x, η̇∗) is defined from (22).

Proof. Since Ay, Aη are Hurwitz, such Py, Pη exist. Taking
time derivatives of V ,

V̇ ≤ −∥y∥2 − 1

ϵ
∥η̃∥2 + ∥Pη∥∥η̇∗∥∥η̃∥

+ ∥GḠ−1∥∥Py∥∥y∥∥η̃∥.

From the Young’s inequality, there exist constants α, β > 0
satisfying ∥y∥∥η̃∥ ≤ α∥y∥2+ 1

4α∥η̃∥
2, ∥η̇∗∥∥η̃∥ ≤ βϵ∥η̇∗∥2+

1
4βϵ∥η̃∥

2. Therefore, the following holds

V̇ ≤ −b1∥y∥2 − b2(ϵ)∥η̃∥2 + β∥Pη∥∥
√
ϵη̇∗∥2

where b1 := 1−α∥GḠ−1∥∥Py∥, b2(ϵ) := 1
ϵ −

∥GḠ−1∥∥Py∥
4α −

∥Pη∥
4βϵ . Since ϵ > 0 can be taken to be arbitrarily small, there

exist α, β, ϵ > 0 satisfying b1, b2(ϵ) > 0.3 Therefore, from the
quadratic property of V , the following holds

V̇ ≤ −cV + χ(∥
√
ϵη̇∗∥)

with c = min{2b1/∥Py∥, 2b2(ϵ)/∥Pη∥}, χ(r) = β∥Pη∥r2.

As can be seen in (20), η̇∗ contains both model uncertainties
and external disturbances. However, since ϵ can be taken to be
arbitrarily small, the perturbing effect of model uncertainties
and external disturbances can be mitigated by taking suffi-
ciently small ϵ.

B. Application to aerial manipulator

We separate the aerial manipulator’s dynamics of each mode
into the multirotor’s fully actuated subsystem, underactuated
subsystem, and the robotic arm. Since we deploy an exogenous
controller for the robotic arm, we only consider controller
design for the multirotor part. The proposed DOB-based
controller can be applied to both subsystems of a multirotor
because both subsystems share the form of (14).

Since all three FF, SPI,DPI modes are modeled to have
the same structure as in (8), a common DOB-based controller
is designed, which operates regardless of mode change. For
the underactuated subsystem (8a), the controller is designed
as

q̇u,i = Auqu,i +Buzu,i, ṗu,i = Aupu,i +BuḠu,iuu,

uu = ūu + Ḡ−1
u uu,dob, uu,dob = pu,[1] − q̇u,[2],

ūu = Ḡ−1
u (z̈u,d −Kupz̃u −Kud

˙̃zu) (26)

and for the fully actuated subsystem (8b),

q̇f,i = Afqf,i +Bfzf,i, ṗf,i = Afpf,i +Bf Ḡf,iuf ,

uf = ūf + Ḡ−1
f uf,dob, uf,dob = pf,[1] − (q̇f,[2] − F̄f ),

ūf = Ḡ−1
f (z̈f,d −Kfpz̃f −Kfd

˙̃zf − F̄f ). (27)

For brevity, we use a notation ∗[1] := [∗1,1; · · · ; ∗n,1] ∈ Rn,
∗[2] := [∗1,2; · · · ; ∗n,2] ∈ Rn where ∗ = [∗1; · · · ; ∗n] ∈ Rnm,
∗i ∈ Rm ∀i = 1, · · · , n. Newly defined controller states are
pu, qu ∈ R4 for the underactuated subsystem and pf , qf ∈ R8

for the fully-actuated subsystem. Au, Bu, Af , Bf inherit the

3Take α <
∥Py∥

∥GḠ−1∥ , β >
∥Pη∥

4
, and ϵ < 4α

∥GḠ−1∥∥Py∥

(
1− ∥Pη∥

4β

)
.

structure of A,B defined in subsection V-A, and Ḡu, Ḡf , F̄f

are defined to have the same structure as Gu, Gf , Ff but with
nominal parameters.

Lemma 1. Let xm = [xu;xf ] and η̇∗m = [η̇∗u; η̇
∗
f ]. Then, for the

closed-loop system of the multirotor part ẋm = fm(xm, η̇∗m)
which can be obtained from (8), (26), and (27), there exist a
common Lyapunov function Vm, a positive constant cm, and
a class K∞ function χc

m satisfying

V̇m =
∂Vm

∂xm
fm(xm, η̇∗m) ≤ −cmVm + χc

m(∥
√
ϵmη̇∗m∥) (28)

with arbitrarily small positive constant ϵm := max{ϵu, ϵf}
where ϵu, ϵf are control parameter ϵ for underactuated and
fully actuated subsystems.

Proof. For both the underactuated and fully actuated subsys-
tems, the following closed-loop systems can be obtained using
(8), (26), and (27) as

ẋu = fu(xu, η̇
∗
u)

ẋf = ff (xf , η̇
∗
f )

which are defined similarly as f(x, η̇∗) in Proposition 1. Then,
thanks to Proposition 1, there exist Lyapunov functions for the
underactuated and fully actuated subsystems

Vu(yu, η̃u) = Vu,1(yu) + Vu,2(η̃u),

Vf (yf , η̃u) = Vf,1(yf ) + Vf,2(η̃f )
(29)

each satisfying (25) as

V̇u =
∂Vu

∂xu
fu(xu, η̇

∗
u) ≤ −cuVu + χu(∥

√
ϵuη̇

∗
u∥),

V̇f =
∂Vf

∂xf
ff (xf , η̇

∗
f ) ≤ −cfVf + χf (∥

√
ϵf η̇

∗
f∥)

(30)

where cu, cf > 0, χu, χf ∈ K∞. Thus, by constructing a com-
mon Lyapunov function Vm = Vu+Vf for all three modes, and
with a definition of fm(xm, η̇∗m) = [fu(xu, η̇

∗
u); ff (xf , η̇

∗
f )],

we can conclude (28) with cm = min{cu, cf} > 0,
χc
m(x) = 2max{χu(x), χf (x)} ∈ K∞, η̇∗m = [η̇∗u; η̇

∗
f ], and

ϵm = max{ϵu, ϵf}.

VI. JUMP MAP ANALYSIS AND
ANALYSIS OF OVERALL IMPULSIVE SWITCHED SYSTEM

To guarantee stability of an aerial manipulator even in the
presence of sudden contact-loss or collision during interaction
with a possibly dynamic object, we show that jumps by
contact-loss and collision satisfy ISS property with respect to
perturbation by end-effector velocity jump δV and interaction
wrench jump δλ. Then, with an additional mild assumption
of kinetic energy increase of the movable object after a colli-
sion, less conservative results are derived where end-effector
velocity jump δV is no longer considered as perturbation.

For the ease of notation, we define Vm(ym, η̃m) =
Vm,1(ym) + Vm,2(η̃m) where

Vm,1(ym) = Vu,1(yu) + Vf,1(yf ),

Vm,2(η̃m) = Vu,2(η̃u) + Vf,2(η̃f ),
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and ym = [yu; yf ], η̃m = [η̃u; η̃f ]. In the following analysis,
we use the fact that the reference state does not change during
jumps, i.e.

z+m,d = z−m,d, ż+m,d = ż−m,d. (31)

A. System state jump

From (31), (12), and the fact that ym = [z̃u; ˙̃zu; z̃f ; ˙̃zf ],

y+m = y−m + EmJ†
aδV (32)

where Em = [02×(6+nθ);Eu; 04×(6+nθ);Ef ]. Eu =
[I2 02×(4+nθ)], Ef = [04×2 I4 04×nθ

]. Therefore, there exist
positive constants cm,0 > 1, cm,1 satisfying

|Vm,1(y
+
m)−Vm,1(y

−
m)| ≤ cm,0Vm,1(y

−
m)+ cm,1∥δV ∥2 (33)

where quadratic property, positive-definiteness of Vm,1(ym),
and upper-boundedness of ∥J†

a∥ are used.

B. Controller state jump

To investigate controller state jump, we first need to derive
what η̃+−η̃− is. Since there exist multiple controller states, i.e.
η̃u, η̃f , we first consider a general form appeared in subsection
V-A for brevity. Consider a generalized nonlinear system (14),
but with ∆ replaced by M−1(J⊤λ+ δ) as

z̈ = F (z, ż, t) +G(z, ż, t)u+M−1(J⊤λ+ δ).

We distinguish the interaction wrench J⊤λ from other distur-
bances δ in ∆ to examine discontinuity in interaction wrench.
By utilizing (15a) and (16), η̃ can be rewritten as

η̃[1] = p[1] +
a0
ϵ

(
1

ϵ
(q[1] − z) +

a1
a0

q[2]

)
− η∗[1]

η̃[2] = ϵp[2] −
a0a1
ϵ2

(
q[1] − z

)
+

1

ϵ

(
(a0 − a21)q[2] − a0ż

)
.

According to (15a), p, q do not jump during jumps. There-
fore, η+[1] = η−[1] can be obtained from (15a) and (16). Then,
η̃+ − η̃− can be computed as

η̃+[1] − η̃−[1] = (G̃− Inz )Kd(ż
+ − ż−) + G̃M−1J⊤(λ+ − λ−)

η̃+[2] − η̃−[2] = −
a0

ϵ
(ż+ − ż−)

(34)
where G̃ = ḠG−1, and the definition of η∗[1] can be found in
(20) with ∆ = M−1(J⊤λ + δ). Since we are interested in
analyzing η̃u and η̃f , we need to replace z with zu and zf .
Since zu = Euza and zf = Efza, for generalization purpose,
we use the matrix E to denote z = Eza. Then, ż+ − ż− in
(34) can be written as E(ż+a − ż−a ). Combining (34) with (12)
and using the fact that η̃ = (Inz

⊗ E1)η̃[1] + (Inz
⊗ E2)η̃[2],

η̃+ − η̃− = C1δV + C2δλ (35)

where δλ = λ+ − λ−, and

C1 =
{
(Inz

⊗ E1)(G̃− Inz
)Kd −

a0
ϵ
(Inz ⊗ E2)

}
EJ†

a,

C2 = (Inz
⊗ E1)G̃M−1J⊤.

Therefore, by concatenating (35) for η̃u and η̃f ,

η̃+m = η̃−m + Cm,1δV + Cm,2δλ (36)

where Cm,1, Cm,2 are defined as C1, C2 but with parameters
of multi-rotor closed-loop dynamics.

Now, by applying quadratic property, positive-definiteness
of Vm,2(η̃m), and upper-boundedness of ∥Cm,1∥ and ∥Cm,2∥,
there exist dm,0 > 1, dm,1, dm,2 > 0 satisfying

Vm,2(η̃
+
m) ≤ dm,0Vm,2(η̃

−
m)+dm,1∥δV ∥2+dm,2∥δλ∥2. (37)

Lemma 2. There exist a positive constant dm and χd
m ∈ K∞

satisfying

Vm(x+
m) ≤ edmVm(x−

m) + χd
m(∥[δV ; δλ]∥). (38)

Proof. Since Vm(xm) = Vm,1(ym) + Vm,2(η̃), (38) can be
achieved by combining (33) and (37).

Therefore, every jump in the hybrid system model in
Fig. 1 satisfies (38). Particularly, jumps without end-effector
velocity jump such as {SPI,DPI} → {SPI,DPI} and
{SPI,DPI} → FF satisfy

Vm(x+
m) ≤ edmV (x−

m) + χd
m(∥δλ∥),

and jumps without interaction wrench jump, for example
FF → FF , satisfy

Vm(x+
m) ≤ edmV (x−

m) + χd
m(∥δV ∥),

and other jumps including FF → {SPI,DPI} satisfy (38).

C. Stability analysis of the entire impulsive switched system

Before providing the final stability result, we derive the
closed-loop impulsive switched system model for aerial phys-
ical interaction with a movable object as

ẋm = fm(xm, η̇∗m) t ̸= tk, k ∈ N (39a)

x+
m = gm,ik(xm, δV, δλ) t = tk, k ∈ N, ik ∈ ld (39b)

where fm(xm, η̇∗m) is defined in Lemma 1, ld = {1, 2, 3}, and

gm,1(x
−
m, δV, δλ) :=

[
y−m + EmJ†

aδV
η̃−m + Cm,1δV + Cm,2δλ

]
,

gm,2(x
−
m, δV, δλ) :=

[
y−m + EmJ†

aδV
η̃−m + Cm,1δV

]
,

gm,3(x
−
m, δV, δλ) :=

[
y−m

η̃−m + Cm,2δλ

]
.

The flow map model (39a) defined in Lemma 1 is obtained by
concatenating closed-loop systems (22) of underactuated and
fully actuated parts, and the jump map model (39b) is derived
from (32) and (36). The first two jump map models gm,1,
gm,2 represent impulsive jump, FF → {SPI,DPI} and
FF → FF respectively, and the last jump model gm,3 is for
non-impulsive jump {SPI,DPI} → FF , {SPI,DPI} →
{SPI,DPI}. Although we know that only one model among
gm,1, gm,2, and gm,3 is activated at a single instant (i.e. they
cannot be activated simultaneously), it is unpredictable which
jump model is triggered at every impulse time tk. We model
such phenomenon using an impulse signal {tk, ik}. ik ∈ ld
is a piecewise constant signal indicating the activated jump
model among gm,1, gm,2, and gm,3, and in definition, it is not
defined in advance to express every possible type of jumps.
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Now, we present the main result which formally guarantees
robust stability of aerial physical interaction with a movable
object in the presence of 1) model uncertainty and sufficiently
smooth external disturbance, 2) velocity jump modeling colli-
sion and 3) interaction wrench jump that models contact-loss
and slip in contact.

Theorem 2. Define ω = [
√
ϵmη̇∗m; δV ; δλ]. Then, the closed-

loop impulsive switched system (39) can be written as{
ẋm = fm(xm, ω), t ̸= tk, k ∈ N
x+
m = gm,ik(xm, ω), t = tk, k ∈ N, ik ∈ ld

(40)

Then, the system (40) is uniformly ISS to ω if ADT condition
holds with τD, N0 satisfying the premise of Theorem 1.

Proof. The proof is finished with Theorem 1, Lemma 1 and
Lemma 2.

Remark 2. By definition, the impulsive switched system model
(40) allows arbitrary impulse time sequence {tk} and ar-
bitrary impulsive signal {ik} between jump map. Therefore,
by analyzing stability of the system (40), we could guarantee
stability during the whole operation of aerial physical interac-
tion even in the presence of sudden, unintentional collision or
contact-loss with an object without assuming any knowledge
of impact timing or impact model.

Thanks to Theorem 1 and the fact that only a finite
number of jumps occur during aerial physical interaction, the
multirotor part is guaranteed to be ISS throughout the whole
interaction with a movable object. This is because N0 can be
taken as the upper bound of the number of jumps and τD as an
arbitrary constant satisfying τD > d/c as in Theorem 1. Note
that this guarantees ultimate boundedness of the state error of
the multirotor part even if the aerial manipulator undergoes
multiple (but finite) times of detachment and collision with
a movable object given that such perturbation are bounded.
This certainly goes beyond the result in [5] where ultimate
boundedness of the state error is only guaranteed under the
condition that disturbance is at least C2.

D. Nominal jump condition

From Theorem 2, ISS property and ultimate boundedness
are guaranteed during the aerial physical interaction. However,
if the two conditions below hold, we can remove one type of
perturbation, which allows less conservative result in the sense
of a smaller error bound. We show that, contrary to the original
setup involving both δV and δλ as perturbation terms, δV is
no longer perturbation during jumps under such conditions.

In that regard, we call the following the nominal conditions:
• Kinetic energy of the movable object increases after

collision,
• Desired velocity of the end-effector is 0 just prior to

jumps.
Since the objective of aerial physical interaction in the paper
is to move a possibly dynamic object, it can be expected that
most collisions, intended or not, result in velocity increase
of the movable object. Therefore, in most cases, the first
condition is satisfied. The second condition can be imposed

to the planning module, and accordingly, it is automatically
satisfied.

Denoting kinetic energy of the aerial manipulator as Kam

and that of the movable object as Kms, the kinetic energy loss
of the entire system including the aerial manipulator and the
movable object after the impact [41] can be written as

K+
am +K+

ms < K−
am +K−

ms. (41)

Using (41) and the first condition which is K+
ms > K−

ms, the
following can be obtained:

K+
am < K−

am. (42)

From (12) and the fact that Kam = 1
2 ż

⊤
a Maża, (42) can be

written as

(ż−a + J†
aδV )⊤Ma(ż

−
a + J†

aδV ) < ż−⊤
a Maż

−
a . (43)

By applying the definition of J†
a , (43) can be further arranged

as

(Jaż
−
a + δV )⊤(JaM

−1
a J⊤

a )−1(Jaż
−
a + δV ) <

(Jaż
−
a )⊤(JaM

−1
a J⊤

a )−1(Jaż
−
a ).

(44)

Therefore, from Proposition 2 in appendix D and (44), there
exist a positive constant Lc satisfying

∥δV ∥ < Lc∥Jaż−a ∥ = Lc∥Ja ˙̃z−a ∥ (45)

where the last equality comes from the second condition,
Jaż

−
a,d = 0.

Now, (45) can be applied to (33) as

|Vm,1(y
+
m)− Vm,1(y

−
m)| ≤ cm,0Vm,1(y

−
m) + cm,1L

2
c∥Ja ˙̃z−a ∥2

< c̃m,0Vm,1(y
−
m) + c̃m,1∥ ˙̃θ−∥2

(46)
where the last inequality is derived from the fact that ∥Ja∥
is bounded, Vm,1(ym) is quadratic, ym = [z̃m; ˙̃zm], and
z̃a = [z̃m; θ̃]. c̃m,0, c̃m,1 are some positive scalars. Similarly,
Lyapunov function analysis for controller state jump (37) can
be arranged as

Vm,2(η̃
+
m) ≤ d̃m,0Vm,2(η̃

−
m) + d̃m,1∥ ˙̃θ−∥2 + dm,2∥δλ∥2 (47)

where d̃m,0 > 1, d̃m,1 > 0. Therefore, by combining (46) and
(47), we can conclude the following:

Vm(x+
m) ≤ ed̃mVm(x−

m) + d̃1∥ ˙̃θ−∥2 + d̃2∥δλ∥2 (48)

where d̃m, d̃1, d̃2 are some positive scalars. If we assume that
an exogenous controller of the robotic arm provides ˙̃

θ− ≈ 0,
the following holds for FF → FF jump

Vm(x+
m) ≤ ed̃mVm(x−

m),

and for FF → {SPI,DPI},

Vm(x+
m) ≤ ed̃mVm(x−

m) + d̃2∥δλ∥2.

Jumps starting from SPI or DPI are omitted in the analysis
since they are non-impulsive, and therefore, no δV exists
originally.

Therefore, if nominal jump conditions are satisfied, taking
rebounds (FF → FF ) for example, the end-effector velocity
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jump δV no longer operates as perturbation. Note also that
analysis without ˙̃

θ ≈ 0 assumption is also possible if we
construct a controller for the robotic arm dynamics (50) based
on the same control law in (15).

VII. PUSHING STRATEGY

Sufficient amount of interaction force is required to push an
object. However, since physical parameters of an interacting
object, including mass and moment of inertia of the object,
and friction between the ground and the object, are unknown,
how large an interaction force should be to push an object is
unknown. Furthermore, considering interaction with an object
in an unstructured environment where an object may have
kinematic constraints in certain direction or become stuck in-
between pushing, the interaction force should be well regulated
not to induce input saturation. Therefore, we choose a strategy
of gradually increasing an interaction force until the object
moves while decreasing the interaction force if encountering
a maximum threshold for safety.

To implement this saturation-aware pushing strategy on
top of a disturbance-rejecting robust motion controller, we
modulate an end-effector position which indirectly controls the
interaction force. Fig. 3 shows the three modes defined for
this pushing strategy: APPROACH, PUSH, and RECOVER.
λsn ∈ R is a surface-normal interaction force. During the AP-
PROACH mode, an end-effector position setpoint is computed
to approach towards a contact surface of the object. Then,
whenever contact is stably established, which is represented
as λsn > λA→P where λA→P > 0, the mode changes to
PUSH mode. In the PUSH mode, the end-effector position
setpoint remains fixed. Thanks to the disturbance-rejecting
property of the DOB-based robust controller, even small
penetrating reference towards the contact surface can induce an
increasing interaction force. Although continuously updating
the position reference to further penetrate the contact surface
would accelerate the increase rate of the interaction force as
done in [5], such method may cause input saturation4 and
show slower pitch angle stabilization in practice due to the
time increase for the penetrated desired position to retract to
the current position.

During experiments, non-ideal situation could occur where
an aerial manipulator bumps into the contact surface during
the APPROACH mode due to a distance measurement error
between the end-effector and the contact surface. If such
impact provokes rebound and activates a transition to the
PUSH mode, since the setpoint is fixed during the PUSH
mode, the aerial manipulator may fail to push the object. To
overcome this problem, we allow a backward transition from
the PUSH mode to the APPROACH mode when no interaction
force is detected, which is represented as λsn < λP→A. Here,
λP→A > 0 is a parameter small enough, and λP→A < λA→P

4This is because such update will accumulate a position error in the pushing
direction so that even after the object moves, the desired pitch angle will
still be tilted toward the pushing direction due to the enlarged position error.
Since the motion of the object could incur sudden tangential friction loss on
the contact surface, to overcome such friction loss which aided the aerial
manipulator to maintain its pitch-tilt configuration, rotors related to pitch
torque can get saturated.

Fig. 3. Mode switching law in pushing strategy for APhI with a possibly
dynamic object. λsn ∈ R, ϕ, ṙc ∈ R3 are surface-normal interaction
force, Euler angles of the multirotor, and linear velocity of the multirotor,
respectively.

Fig. 4. Motion planner switching law. ϕ ∈ R3 is Euler angle of the multirotor.

is assumed to avoid Zeno behavior [8] between A and P
modes.

Next, we define the RECOVER mode to impose safety. Dur-
ing the RECOVER mode, the end-effector position setpoint is
computed to retract backward against the pushing direction,
inducing decrease in the interaction force. A transition from
the PUSH mode to the RECOVER mode is activated only
when 1) interaction force is excessively high λsn > λP→R or
2) the movable object starts to move {λsn ≥ λP→A ∧ ∥ṙc∥ >
vP→R}. These two conditions are imposed to prevent input
saturation due to excessive interaction force or sudden loss
of contact in advance. We finish the RECOVER mode when
the aerial manipulator starts to hover without interaction, and
such condition is described as |ϕ1|, |ϕ2| < ϕR→A. To enable
repetitive pushing, we define transition from the RECOVER
mode to the APPROACH mode, whose transition condition
is the terminating condition of the RECOVER mode. Note
that although we terminate the pushing cycle, a cycle from
APPROACH to PUSH to RECOVER and to APPROACH
again, manually in current experiment setup, the pushing
cycle can also be autonomously terminated by simply adding
HOVER mode after the RECOVER mode and defining a
terminate condition.

The pushing strategy assumes that the contact surface is
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in front of the end-effector. To autonomously conduct APhI
with a possibly dynamic object in a more general setting
including arbitrary initial position or sequential pushing while
altering contact points, we integrate the pushing strategy with
a high-level path planning algorithm. For smooth transition
between the pushing strategy and the path navigating strategy,
we introduce an intermediate RECOVER mode as in Fig. 4.

VIII. EXPERIMENTAL RESULTS

We consider the following five different experimental sce-
narios which contain uncertain discontinuities in both velocity
and interaction wrench: pushing a possibly dynamic object

1) under unexpected change of friction,
2) while colliding with another movable object,
3) while colliding with a static environment,
4) on a slanted surface,
5) capable of both translation and rotation with multiple

contacts.
The first, second, and forth scenarios are presented to demon-
strate robustness of the hybrid closed-loop system against
uncertain discontinuities and continuous disturbance. The third
scenario is to show effectiveness of the saturation-aware
pushing strategy. We conduct the last scenario to investigate
validity of the integrated motion planner combining the push-
ing strategy and a navigation algorithm to further applicability
of an aerial manipulator in real world.

In all scenarios, we assume no knowledge of physical prop-
erties of a movable object such as mass, moment of inertia,
friction coefficient, or restitution coefficient. The controller
only requires state feedback, and the motion planner requires
state feedback, pose of the contact surface, and interaction
force. We utilize external motion capture system to obtain
the pose of the contact surface and momentum-based wrench
estimation algorithm [48] to estimate the interaction force.
One may employ onboard sensors for estimating the pose
of the contact surface, but we believe this is beyond the
scope of the current study. An alternative of wrench estimation
would be equipping a force/torque sensor at the end-effector
as in [6, 23], but such strategy has a drawback of high cost
and load increase. Although the estimated wrench through
the momentum-based wrench estimator is a low-pass filtered
signal of the true wrench [48], robust stability of the closed-
loop system is still conserved since it is derived independently
from the external wrench estimation.

A. Setup

We develop a tilt-hexarotor [27], a hexarotor with rotor
mounts of fixed inclination (10◦ in our platform) to enable
larger yaw torque generation. Note that although the utilized
platform is fully actuated having 6-control degrees-of-freedom
(cDoF), we utilize it as if it were 4 cDoF to directly apply the
proposed controller. For physical interaction, a single cDoF
robotic arm is attached to the tilt-hexarotor. As can be found
in Fig. 10(a), we use an end-effector of dimension 25 cm ×
5 cm.

For actuation of the tilt-hexarotor, we use six KDE rotors
and two HOBBYWING ESCs, and for that of the robotic

TABLE II
PARAMETERS USED IN THE PLANNER AND CONTROLLER

(DIAGONAL ELEMENTS FOR MATRICES)

Parameter Value Parameter Value

λA→P

λP→R

λP→A

3.0 N
20 N
2.5 N

vP→R

m̄
J̄

0.07 m/s
2.9 kg

10−2[3.5, 3.5, 4.5] kgm2

Gain Value Gain Value

Kup

Kud

[6, 6]
[4, 4]

Kfp

Kfd

[8, 130, 130, 20]
[5, 30, 30, 15]

ϵu 0.5 ϵf 0.1
a0,u, a1,u 1.0, 2.0 a0,f , a1,f 1.0, 2.0

Fig. 5. Flow chart of the overall algorithms. The proposed algorithms, Motion
planning and Control, are highlighted with boxes of thicker line, and auxiliary
algorithms for experiments which are Path Planning, Force Estimation, and
State Estimation are listed in the left.

arm, we use one ROBOTIS Dynamixel. The robotic arm is
configured to rotate in the pitch direction so that the orientation
of the end-effector remains aligned to the contact surface
regardless of the pitching motion. Furthermore, to achieve the
orientation alignment despite the rotation of the object being
pushed, the motion planner computes the desired yaw angle
ϕ3,d according to the current orientation of the contact surface.
OptiTrack motion capture system (MoCap) and LORD IMU
are utilized for localization, and an error state Kalman filter
[49] is applied to estimate the full state of the aerial robot.
All algorithms including localization, control, and planning
are executed in an onboard computer, Intel NUC, employing
Robot Operating System (ROS) in Ubuntu 20.04.

Parameters and gains of the controller and the planner used
during experiments are listed in Table II. Appropriate control
gains are obtained from preliminary hovering experiments, and
note that no additional fine tuning of control gains among
experimental scenario change is conducted. Planning param-
eters λA→P , λP→A, λP→R are calculated from a preliminary
cart pushing experiment in which setpoints rd, ϕ3,d shown in
the overall flowchart Fig. 5 are generated manually instead.
Note also that the planner parameters are fixed during all five
experimental scenarios.

In Figs. 6–10, solid lines are either measured or estimated
data, and dashed lines are desired trajectories. In all figures,
the two graphs at the bottom show Euler angles of the
aerial manipulator and an estimated interaction force during
experiments. λ1, λ2 ∈ R in all figures are x, y-directional
estimated interaction forces in a world fixed frame FW which
is denoted in the captured image showing experimental results.
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Fig. 6. Scenario 1 – Pushing a movable object under unexpected change of
friction.

The background color of green, gray, red, and blue in the
bottom graph indicates the planner mode each indicating
NAVIGATE, APPROACH, PUSH, and RECOVER as in the
top right legend of each graph. The graphs at the top in Figs. 6–
9 show the end-effector position in the pushing direction re,1
and the contact surface position of the movable object rcart,1,
which is a cart. These graphs visualize when the movable
object starts to move and when it halts. The graphs in the
second row of Figs. 6–9 show x, y position of the aerial robot.

B. Scenario 1 – pushing a movable object under unexpected
change of friction

In this scenario, an unidirectional movable cart is used as
a movable object. Mass of the cart is about 30 kg including
a 10 kg weight inside the cart, and four unidirectional casters
are installed at the bottom of the cart. To provide different
ground friction in the experiment, we lay a white wooden
board on a brownish rubber mat as in Fig. 6. The white board
provides smaller ground friction compared to the rubber mat.
This friction change can also be inferred from the experimental

Fig. 7. Scenario 2 – Pushing a movable object while colliding with another
movable object.

results in Fig. 6 where about 30 deg pitching is required
when pushing the cart on the rubber mat while about 23 deg
pitching only is required on the wooden board. In both ground
conditions, and even during transitioning from the wooden
board to the rubber mat, the controller could provide robust
stability. Furthermore, consecutive cart pushing is successfully
accomplished without the knowledge of the cart and the
surrounding environment. Note also that the aerial robot shows
robust stability against sudden contact-loss as guaranteed in
Theorem 2 which occurs when the cart steps down from the
wooden board to the rubber mat (between (b) and (c) in Fig.
6).

C. Scenario 2 – pushing a movable object while colliding with
another movable object

This scenario is another demonstration of both robust sta-
bility of the controller and combined performance of the
controller and planner eventually leading to successful pushing
task. While being pushed, the cart encounters another unknown
movable object, a black box in Fig. 7, and collides with it (see
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Fig. 8. Scenario 3 – Pushing a movable object while colliding with a static
environment.

10−20 s in Fig. 7). Then, for a few moment during the second
pushing (b), the black box moves jointly with the cart behaving
as if it is an added mass to the cart. As the black box rotates
and detaches from the cart as in (c), the aerial manipulator
could push the cart with less endeavor (see lowered interaction
force λ1 at 54 s compared to that at 47 s during which
the black box jointly moves with the cart). Through this
experiment, we can conclude that robustness against sudden
collision is validated, and the presented methods can succeed
in pushing a movable object even when the mass of the object
changes.

D. Scenario 3 – pushing a movable object while colliding with
a static environment

While interacting with a movable object in an unstructured
environment, it is plausible that the movable object collides
with a static environment and stops to move. In this scenario,
we validate that the applied safety condition λsn > λP→R in
the pushing strategy in Fig. 3 can practically ensure safety.
Since the aerial robot has no knowledge if the cart is static

Fig. 9. Scenario 4 – Pushing a movable object on a slanted surface.

or movable, it first pushes the cart as in (a) of Fig. 8. During
pushing, the cart collides with a static stopper as in (b). Then,
as in (c), the aerial robot pushes the cart again, but due to
the stopper behind the cart, the cart does not move. When
the magnitude of the interaction force passes λP→R which
is set to be 20 N, the RECOVER mode is again activated to
provide safety. The robust stability is maintained during 40 deg
of pitching. Thanks to this safety condition, APhI including
collision with a static environment can be safely conducted.

E. Scenario 4 – pushing a movable object on a slanted surface

To test robustness against sudden contact-loss during APhI
with a movable object, we conduct pushing a cart on a slanted
surface as in Fig. 9. To make the cart be static on a slanted
surface, we attach a black soft tape to the slanted surface and
lay the front casters of the cart on the tape as in Fig. 9. Since
the aerial robot does not know how much interaction force is
required to push the cart, it gradually increases the pitch angle,
which is the consequence of the controller and the planner.
When the pitch angle reaches almost 40 deg, the cart starts
to move, and due to the inclination, the cart slides down the
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Fig. 10. Scenario 5 – Pushing a movable object capable of both translation
and rotation with multiple contacts.

surface which results in sudden contact-loss. In the presence
of such contact-loss, stable flight is still achieved as analyzed
in Theorem 2.

F. Scenario 5 – pushing a movable object capable of both
translation and rotation with multiple contacts

The last experiment is to show applicability of the proposed
framework to pushing an omnidirectional movable object. For
the experiment, we replace unidirectional casters to omnidi-
rectional ones underneath the cart. Compared to other experi-
ments conducted in [5–7] where only one directional motion
of a movable object is considered, both translation and rotation
should be properly tackled in this experiment, which makes the
problem more challenging. Two major difficulties are 1) how
much translation or rotation will occur varies as a contact point
on the cart changes and 2) the same phenomenon can happen
even for the same contact point since friction acting on each

caster changes over environment change. For example, despite
the casters being omnidirectional, larger interaction force is
required to push the cart if the casters are not aligned to the
force direction. Since the cart is not only able to translate
but also rotate after being pushed, collision between the aerial
robot and the cart may happen after pushing. We found that
the RECOVER strategy in the planner plays an important role
in this collision avoidance since whenever the cart is pushed,
the planner generates a retreating trajectory to avoid collision.

The experiment is conducted by first designating a desired
contact surface on the cart. Then, the rest of the process is
executed onboard and online: path planning, interaction force
estimation, state estimation, motion planning, and control. The
path planning module computes a collision-free path from the
current position of the aerial manipulator to the designated
contact point. An algorithmic flow can be found in Fig. 5.
Whenever a new desired contact surface is designated by an
operator, the same process from path planning to control is
activated. The experimental result can be found in Fig. 10.
Rectangles in the top graph visualize the pose of the cart at
every 3 seconds. Arrows with numbers 1⃝, 2⃝, 3⃝ indicate
the three consecutive contact points. The experimental results
validate the robustness of the proposed control and pushing
strategy against unknown interaction wrench and unexpected
motion of the omnidirectional cart which induces simultaneous
force and torque disturbance to the aerial manipulator.

IX. CONCLUSION

In this work, we presented a hybrid system analysis of aerial
physical interaction to guarantee robustness against sufficiently
smooth disturbance and a class of discontinuous uncertainties
including collision and contact-loss. To achieve the analysis,
we first derived a hybrid system model of APhI with a
movable object and transformed the closed-loop dynamics
into impulsive switched system where a nonlinear DOB-
based controller was applied. Robustness of each continuous
dynamics and discrete dynamics was analyzed, and that of the
overall closed-loop impulsive switched system was verified
by applying the derived stability condition for an impulsive
switched system with multiple discrete dynamics. We also
proposed a motion planning to enable APhI while providing
practical safety with respect to rotor saturation which could
be incurred by large interaction wrench or sudden contact-
loss that induces large torque generation to compensate the
vanished friction. We employed a finite state machine where
multiple modes and switching law among them are defined. To
validate the proposed framework, comprehensive experiments
were successfully demonstrated using an underactuated aerial
manipulator: 1) pushing a movable object with a sudden
ground friction change, 2) with a sudden collision with another
movable object, 3) with a sudden collision with a static
environment, 4) with a sudden contact-loss, and 5) pushing
an omnidirectional movable object with multiple contacts.

Transporting a movable object to a target position and
orientation by pushing is not the objective of the current work.
Such a task is addressed in the ongoing research area of
Nonprehensile pushing manipulation, which has been mainly
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studied for ground mobile robots [50–54]. Incorporating such
pushing manipulation strategies as a high-level planner into
our framework could be an interesting research direction.

APPENDIX

A. Proof of Theorem 1

Proof. The difference between [35, Theorem 1] and this
theorem is that this theorem additionally includes multiple
models in discrete dynamics. By imposing the same inequality
condition (4c) to all {gi : i ∈ ld}, the same ISS result
can be obtained by following the proof of [40, Theorem 1].
Conditions of [40, Theorem 1] can be shown to be satisfied
by choosing λ = c − d/τD and 0 < µ ≤ N0d if d > 0, and
any arbitrary 0 < λ < c, µ > 0 if d < 0.

B. Derivation of robotic arm dynamics

From (6b), robotic arm dynamics can be derived as

Mθ θ̈ + Cθ = Bθua + δθ −M⊤
ϕθϕ̈ (49)

where ua = [T ; τϕ; τθ], Bθ =
[
S⊤
θ Re3 0m×3 Im

]
. A

definition of Sθ ∈ R3×m can be found in appendix C. Then,
the robotic arm dynamics can be computed as

θ̈ = Fθ +Gθuθ +∆θ (50)

where Fθ = −M−1
θ Cθ, Gθ = M−1

θ , ∆θ = M−1
θ (J⊤

θ λa +
δθ −M⊤

ϕθϕ̈+ S⊤
θ Re3T ), uθ = τθ.

C. Definition of Sϕ, Sθ

To define Sϕ, Sθ which originate from coordinate transfor-
mation appeared in [42], we first introduce a new generalized
coordinate zn = [r;ϕ; θ] ∈ R6+m where r is the CoM position
of the multirotor. Then, using an Euler-Lagrange equation,
equations of motion of the aerial manipulator can be derived
as

Mnz̈n + Cnżn +Gn = Bnua + δn

where ua = [T ; τϕ; τθ]. Defining submatrices of Mn as
Mn,11 ∈ R3×3,Mn,12 ∈ R3×(3+m),Mn,22 ∈ R(3+m)×(3+m)

satisfying

Mn =

[
Mn,11 Mn,12

M⊤
n,12 Mn,22

]
,

Sϕ, Sθ are defined from [Sϕ Sθ] = −M−1
n,11Mn,12.

D. Proposition 2 and proof

Proposition 2. Given a symmetric, positive definite matrix
A > 0, if (x + v)⊤A(x + v) < v⊤Av, then there exist a
constant Lc > 0 such that 0 < ∥x∥ < Lc∥v∥.

Proof. Since A is positive-definite, there exist positive scalars
λ, λ̄ > 0 satisfying λI ≤ A ≤ λ̄I . Therefore, using the
triangle inequality, λ(∥x∥2 − ∥v∥2) < λ̄∥v∥2. The proof is
finished by taking Lc =

√
λ̄/λ+ 1.
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[48] T. Tomić, C. Ott, and S. Haddadin, “External wrench estimation,
collision detection, and reflex reaction for flying robots,” IEEE Trans.
Robot., vol. 33, no. 6, pp. 1467–1482, 2017.

[49] [Online]. Available: https://github.com/ChanghyeonKim93/error state
kalman filter ros

[50] F. Bertoncelli, F. Ruggiero, and L. Sabattini, “Linear time-varying mpc
for nonprehensile object manipulation with a nonholonomic mobile
robot,” in 2020 IEEE Int. Conf. Robot. Autom. IEEE, 2020, pp. 11 032–
11 038.

[51] A. Rigo, Y. Chen, et al., “Contact optimization for non-prehensile loco-
manipulation via hierarchical model predictive control,” in 2023 IEEE
Int. Conf. Robot. Autom. IEEE, 2023, pp. 9945–9951.

[52] Y. Tang, H. Zhu, et al., “Unwieldy object delivery with nonholonomic
mobile base: A stable pushing approach,” IEEE Robot. Autom. Lett.,
vol. 8, no. 11, pp. 7727–7734, 2023.

[53] A. Heins and A. P. Schoellig, “Force push: Robust single-point pushing
with force feedback,” arXiv preprint arXiv:2401.17517, 2024.

[54] I. Ozdamar, D. Sirintuna, et al., “Pushing in the dark: A reactive
pushing strategy for mobile robots using tactile feedback,” arXiv preprint
arXiv:2403.09305, 2024.

Dongjae Lee (Graduate Student Member, IEEE)
received the B.S. and M.S. degrees in mechanical
and aerospace engineering in 2018 and 2020, re-
spectively, from Seoul National University, Seoul,
South Korea, where he is currently working toward
the Ph.D. degree in aerospace engineering.

His current research interests include control and
planning of robotic systems.

Jeonghyun Byun (Graduate Student Member,
IEEE) received the B.S. degree in aerospace en-
gineering in 2020 from Seoul National University,
Seoul, South Korea, where he is currently pursuing
the Ph.D. degree in aerospace engineering.

His current research interests include control and
planning of aerial robots.

Hyoun Jin Kim (S’98-M’02) received the B.S.
degree from the Korea Advanced Institude of Tech-
nology, Daejeon, South Korea, in 1995, and the
M.S. and Ph.D. degrees in mechanical engineering
from the University of California at Berkeley (UC
Berkeley), Berkeley, CA, USA, in 1999 and 2001,
respectively.

From 2002 to 2004, she was a Post-Doctoral
Researcher in electrical engineering and computer
science with UC Berkeley. In 2004, she joined the
Department of Mechanical and Aerospace Engineer-

ing, Seoul National University, Seoul, South Korea, as an Assistant Professor,
where she is currently a Professor. Her current research interests include
intelligent control of robotic systems and motion planning.

https://github.com/ChanghyeonKim93/error_state_kalman_filter_ros
https://github.com/ChanghyeonKim93/error_state_kalman_filter_ros

	Introduction
	Problem description
	Objective and contribution

	Related work
	System modeling for APhI
	Control and stability analysis for APhI
	Pushing strategy for APhI with a possibly dynamic object

	Preliminaries on system analysis
	Impulsive switched system
	Input-to-state stability
	Average dwell-time
	Lyapunov-based sufficient condition of ISS for impulsive switched system
	Overview of system modeling, controller design and stability analysis
	Notations

	System modeling
	Flow map
	Jump map
	Impulsive jump
	Non-impulsive jump


	Controller design and flow map analysis
	DOB-based controller design for generalized nonlinear system
	Application to aerial manipulator

	Jump map analysis and analysis of overall impulsive switched system
	System state jump
	Controller state jump
	Stability analysis of the entire impulsive switched system
	Nominal jump condition

	Pushing strategy
	Experimental results
	Setup
	Scenario 1 – pushing a movable object under unexpected change of friction
	Scenario 2 – pushing a movable object while colliding with another movable object
	Scenario 3 – pushing a movable object while colliding with a static environment
	Scenario 4 – pushing a movable object on a slanted surface
	Scenario 5 – pushing a movable object capable of both translation and rotation with multiple contacts

	Conclusion
	Appendix
	Proof of Theorem 1
	Derivation of robotic arm dynamics
	Definition of S, S
	Proposition 2 and proof

	References
	Biographies
	Dongjae Lee
	Jeonghyun Byun
	Hyoun Jin Kim


